

Welcome to nbclient

[image: GitHub stars]
 [https://github.com/jupyter/nbclient][image: GitHub Actions]
 [https://github.com/jupyter/nbclient/actions][image: CodeCov]
 [https://codecov.io/gh/jupyter/nbclient]—

NBClient lets you execute notebooks.

A client library for programmatic notebook execution, NBClient is a tool for running Jupyter Notebooks in
different execution contexts, including the command line. NBClient was spun out of nbconvert [https://nbconvert.readthedocs.io/en/latest/]’s
former ExecutePreprocessor.

Demo

To demo NBClient interactively, click the Binder link below:

[image: _images/badge_logo.svg]
 [https://mybinder.org/v2/gh/jupyter/nbclient/master?filepath=binder%2Frun_nbclient.ipynb]

Origins

This library used to be part of nbconvert [https://nbconvert.readthedocs.io/en/latest/] and was extracted into its ownlibrary for easier updating and importing by downstream libraries and applications.

Python Version Support

This library currently supports python 3.6+ versions. As minor python
versions are officially sunset by the python org, nbclient will similarly
drop support in the future.

Documentation

These pages guide you through the installation and usage of nbclient.

Documentation

	Installation

	Executing notebooks

	Changes in NBClient {#changelog}

API Reference

If you are looking for information about a specific function, class, or method,
this documentation section will help you.

Table of Contents

	Reference
	nbclient package
	Subpackages

	Submodules

	nbclient.client module

	nbclient.exceptions module

	Module contents

	Config file and command line options
	Options

	nbclient
	nbclient package

Indices and tables

	Index

	Module Index

	Search Page

Installation

Installing nbclient

From the command line:

python3 -m pip install nbclient

See also

	Installing Jupyter [https://jupyter.readthedocs.io/en/latest/install.html]
	NBClient is part of the Jupyter ecosystem.

Executing notebooks

Jupyter notebooks are often saved with output cells that have been cleared.
NBClient provides a convenient way to execute the input cells of an
.ipynb notebook file and save the results, both input and output cells,
as a .ipynb file.

In this section we show how to execute a .ipynb notebook
document saving the result in notebook format. If you need to export
notebooks to other formats, such as reStructured Text or Markdown (optionally
executing them) see nbconvert [https://nbconvert.readthedocs.io/en/latest/].

Executing notebooks can be very helpful, for example, to run all notebooks
in Python library in one step, or as a way to automate the data analysis in
projects involving more than one notebook.

Using the Python API interface

This section will illustrate the Python API interface.

Example

Let’s start with a complete quick example, leaving detailed explanations
to the following sections.

Import: First we import nbformat and the NotebookClient
class:

import nbformat
from nbclient import NotebookClient

Load: Assuming that notebook_filename contains the path to a notebook,
we can load it with:

nb = nbformat.read(notebook_filename, as_version=4)

Configure: Next, we configure the notebook execution mode:

client = NotebookClient(nb, timeout=600, kernel_name='python3', resources={'metadata': {'path': 'notebooks/'}})

We specified two (optional) arguments timeout and kernel_name, which
define respectively the cell execution timeout and the execution kernel.
Usually you don’t need to set these options, but these and other options are
available to control execution context. Note that path specifies
in which folder to execute the notebook.

Execute/Run: To actually run the notebook we call the method
execute:

client.execute()

Hopefully, we will not get any errors during the notebook execution
(see the last section for error handling). This notebook will
now have its cell outputs populated with the result of running
each cell.

Save: Finally, save the resulting notebook with:

nbformat.write(nb, 'executed_notebook.ipynb')

That’s all. Your executed notebook will be saved in the current folder
in the file executed_notebook.ipynb.

Execution arguments (traitlets)

The arguments passed to NotebookClient are configuration options
called traitlets [https://traitlets.readthedocs.io/en/stable].
There are many cool things about traitlets. For example,
they enforce the input type, and they can be accessed/modified as
class attributes.

Let’s now discuss in more detail the two traitlets we used.

The timeout traitlet defines the maximum time (in seconds) each notebook
cell is allowed to run, if the execution takes longer an exception will be
raised. The default is 30 s, so in cases of long-running cells you may want to
specify an higher value. The timeout option can also be set to None
or -1 to remove any restriction on execution time.

The second traitlet, kernel_name, allows specifying the name of the kernel
to be used for the execution. By default, the kernel name is obtained from the
notebook metadata. The traitlet kernel_name allows specifying a
user-defined kernel, overriding the value in the notebook metadata. A common
use case is that of a Python 2/3 library which includes documentation/testing
notebooks. These notebooks will specify either a python2 or python3 kernel in
their metadata (depending on the kernel used the last time the notebook was
saved). In reality, these notebooks will work on both Python 2 and Python 3,
and, for testing, it is important to be able to execute them programmatically
on both versions. Here the traitlet kernel_name helps simplify and
maintain consistency: we can just run a notebook twice, specifying first
“python2” and then “python3” as the kernel name.

Hooks before and after notebook or cell execution

There are several configurable hooks that allow the user to execute code before and
after a notebook or a cell is executed. Each one is configured with a function that will be called in its
respective place in the execution pipeline.
Each is described below:

Notebook-level hooks: These hooks are called with a single extra parameter:

	notebook=NotebookNode: the current notebook being executed.

Here is the available hooks:

	on_notebook_start will run when the notebook client is initialized, before any execution has happened.

	on_notebook_complete will run when the notebook client has finished executing, after kernel cleanup.

	on_notebook_error will run when the notebook client has encountered an exception before kernel cleanup.

Cell-level hooks: These hooks are called with at least two parameters:

	cell=NotebookNode: a reference to the current cell.

	cell_index=int: the index of the cell in the current notebook’s list of cells.

Here are the available hooks:

	on_cell_start will run for all cell types before the cell is executed.

	on_cell_execute will run right before the code cell is executed.

	on_cell_complete will run after execution, if the cell is executed with no errors.

	on_cell_executed will run right after the code cell is executed.

	on_cell_error will run if there is an error during cell execution.

on_cell_executed and on_cell_error are called with an extra parameter execute_reply=dict.

Handling errors and exceptions

In the previous sections we saw how to save an executed notebook, assuming
there are no execution errors. But, what if there are errors?

Execution until first error

An error during the notebook execution, by default, will stop the execution
and raise a CellExecutionError. Conveniently, the source cell causing
the error and the original error name and message are also printed.
After an error, we can still save the notebook as before:

nbformat.write(nb, 'executed_notebook.ipynb')

The saved notebook contains the output up until the failing cell,
and includes a full stack-trace and error (which can help debugging).

Handling errors

A useful pattern to execute notebooks while handling errors is the following:

from nbclient.exceptions import CellExecutionError

try:
 client.execute()
except CellExecutionError:
 msg = 'Error executing the notebook "%s".\n\n' % notebook_filename
 msg += 'See notebook "%s" for the traceback.' % notebook_filename_out
 print(msg)
 raise
finally:
 nbformat.write(nb, notebook_filename_out)

This will save the executed notebook regardless of execution errors.
In case of errors, however, an additional message is printed and the
CellExecutionError is raised. The message directs the user to
the saved notebook for further inspection.

Execute and save all errors

As a last scenario, it is sometimes useful to execute notebooks which raise
exceptions, for example to show an error condition. In this case, instead of
stopping the execution on the first error, we can keep executing the notebook
using the traitlet allow_errors (default is False). With
allow_errors=True, the notebook is executed until the end, regardless of
any error encountered during the execution. The output notebook, will contain
the stack-traces and error messages for all the cells raising exceptions.

Widget state

If your notebook contains any
Jupyter Widgets [https://github.com/jupyter-widgets/ipywidgets/],
the state of all the widgets can be stored in the notebook’s metadata.
This allows rendering of the live widgets on for instance nbviewer, or when
converting to html.

We can tell nbclient to not store the state using the store_widget_state
argument:

client = NotebookClient(nb, store_widget_state=False)

This widget rendering is not performed against a browser during execution, so
only widget default states or states manipulated via user code will be
calculated during execution. %%javascript cells will execute upon notebook
rendering, enabling complex interactions to function as expected when viewed by
a UI.

If you can’t view widget results after execution, you may need to select
Trust Notebook under the File menu.

Using a command-line interface

This section will illustrate how to run notebooks from your terminal. It supports the most basic use case. For more sophisticated execution options, consider the papermill [https://pypi.org/project/papermill/] library.

This library’s command line tool is available by running jupyter execute. It expects notebooks as input arguments and accepts optional flags to modify the default behavior.

Running a notebook is this easy.:

jupyter execute notebook.ipynb

You can pass more than one notebook as well.:

jupyter execute notebook.ipynb notebook2.ipynb

By default, notebook errors will be raised and printed into the terminal. You can suppress them by passing the --allow-errors flag.:

jupyter execute notebook.ipynb --allow-errors

Other options allow you to modify the timeout length and dictate the kernel in use. A full set of options is available via the help command.:

jupyter execute --help

An application used to execute notebook files (*.ipynb)

Options
=======
The options below are convenience aliases to configurable class-options,
as listed in the "Equivalent to" description-line of the aliases.
To see all configurable class-options for some <cmd>, use:
 <cmd> --help-all

--allow-errors
 Errors are ignored and execution is continued until the end of the notebook.
 Equivalent to: [--NbClientApp.allow_errors=True]
--timeout=<Int>
 The time to wait (in seconds) for output from executions. If a cell
 execution takes longer, a TimeoutError is raised. ``-1`` will disable the
 timeout.
 Default: None
 Equivalent to: [--NbClientApp.timeout]
--startup_timeout=<Int>
 The time to wait (in seconds) for the kernel to start. If kernel startup
 takes longer, a RuntimeError is raised.
 Default: 60
 Equivalent to: [--NbClientApp.startup_timeout]
--kernel_name=<Unicode>
 Name of kernel to use to execute the cells. If not set, use the kernel_spec
 embedded in the notebook.
 Default: ''
 Equivalent to: [--NbClientApp.kernel_name]

To see all available configurables, use `--help-all`.

Changes in NBClient {#changelog}

0.10.0

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.9.1...3286ae09f41d04fd3354519582750775abc034e5])

Enhancements made

	Optionally write out executed notebook in jupyter-execute #307 [https://github.com/jupyter/nbclient/pull/307] (@wpk-nist-gov [https://github.com/wpk-nist-gov])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2024-03-12&to=2024-03-12&type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Ablink1073+updated%3A2024-03-12..2024-03-12&type=Issues] | @wpk-nist-gov [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Awpk-nist-gov+updated%3A2024-03-12..2024-03-12&type=Issues]

0.9.1

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.9.0...6f6aa8cb1a853c81975fcc48fa5cfcc3d37bcddd])

Maintenance and upkeep improvements

	Update Release Scripts #309 [https://github.com/jupyter/nbclient/pull/309] (@blink1073 [https://github.com/blink1073])

	Pin to Pytest 7 #308 [https://github.com/jupyter/nbclient/pull/308] (@blink1073 [https://github.com/blink1073])

Other merged PRs

	chore: update pre-commit hooks #305 [https://github.com/jupyter/nbclient/pull/305] (@pre-commit-ci [https://github.com/pre-commit-ci])

	chore: update pre-commit hooks #304 [https://github.com/jupyter/nbclient/pull/304] (@pre-commit-ci [https://github.com/pre-commit-ci])

	chore: update pre-commit hooks #303 [https://github.com/jupyter/nbclient/pull/303] (@pre-commit-ci [https://github.com/pre-commit-ci])

	Bump actions/checkout from 3 to 4 #302 [https://github.com/jupyter/nbclient/pull/302] (@dependabot [https://github.com/dependabot])

	chore: update pre-commit hooks #300 [https://github.com/jupyter/nbclient/pull/300] (@pre-commit-ci [https://github.com/pre-commit-ci])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2023-11-07&to=2024-03-12&type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Ablink1073+updated%3A2023-11-07..2024-03-12&type=Issues] | @dependabot [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adependabot+updated%3A2023-11-07..2024-03-12&type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Apre-commit-ci+updated%3A2023-11-07..2024-03-12&type=Issues]

0.9.0

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.8.0...31cf1e751935628b2ce8b88b7c00e5b53e9dcfd6])

Maintenance and upkeep improvements

	Use jupyter releaser #301 [https://github.com/jupyter/nbclient/pull/301] (@blink1073 [https://github.com/blink1073])

	Clean up lint and move tests out of source #299 [https://github.com/jupyter/nbclient/pull/299] (@blink1073 [https://github.com/blink1073])

	Adopt ruff format #298 [https://github.com/jupyter/nbclient/pull/298] (@blink1073 [https://github.com/blink1073])

	Update typings for mypy 1.6 #297 [https://github.com/jupyter/nbclient/pull/297] (@blink1073 [https://github.com/blink1073])

	Adopt sp-repo-review #295 [https://github.com/jupyter/nbclient/pull/295] (@blink1073 [https://github.com/blink1073])

	Fix lint error #289 [https://github.com/jupyter/nbclient/pull/289] (@blink1073 [https://github.com/blink1073])

Other merged PRs

	Bump actions/checkout from 3 to 4 #293 [https://github.com/jupyter/nbclient/pull/293] (@dependabot [https://github.com/dependabot])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2023-05-22&to=2023-11-07&type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Ablink1073+updated%3A2023-05-22..2023-11-07&type=Issues] | @dependabot [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adependabot+updated%3A2023-05-22..2023-11-07&type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Apre-commit-ci+updated%3A2023-05-22..2023-11-07&type=Issues]

0.8.0

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.7.4...cb7b4f7f409bbd06d55cc339afdcdea79da0e199])

Maintenance and upkeep improvements

	Bump min version support #287 [https://github.com/jupyter/nbclient/pull/287] (@blink1073 [https://github.com/blink1073])

Other merged PRs

	Bump actions/checkout from 2 to 3 #275 [https://github.com/jupyter/nbclient/pull/275] (@dependabot [https://github.com/dependabot])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2023-04-25&to=2023-05-22&type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Ablink1073+updated%3A2023-04-25..2023-05-22&type=Issues] | @dependabot [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adependabot+updated%3A2023-04-25..2023-05-22&type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Apre-commit-ci+updated%3A2023-04-25..2023-05-22&type=Issues]

0.7.4

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.7.3...20b7d4b6eef33ccd1bbd8d346a7a75522ac67d75])

Enhancements made

	include stream output in CellExecutionError #282 [https://github.com/jupyter/nbclient/pull/282] (@minrk [https://github.com/minrk])

Bugs fixed

	avoid duplicate ‘Exception: message’ in CellExecutionError #283 [https://github.com/jupyter/nbclient/pull/283] (@minrk [https://github.com/minrk])

Maintenance and upkeep improvements

	Use local coverage #281 [https://github.com/jupyter/nbclient/pull/281] (@blink1073 [https://github.com/blink1073])

Other merged PRs

	Send KeyboardInterrupt a little later in test_run_all_notebooks[Interrupt.ipynb-opts6] #285 [https://github.com/jupyter/nbclient/pull/285] (@kxxt [https://github.com/kxxt])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2023-04-03&to=2023-04-25&type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Ablink1073+updated%3A2023-04-03..2023-04-25&type=Issues] | @davidbrochart [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adavidbrochart+updated%3A2023-04-03..2023-04-25&type=Issues] | @kxxt [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Akxxt+updated%3A2023-04-03..2023-04-25&type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Aminrk+updated%3A2023-04-03..2023-04-25&type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Apre-commit-ci+updated%3A2023-04-03..2023-04-25&type=Issues]

0.7.3

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.7.2...aa62bc79274d264e9b9d70a139c9506a740b5d77])

Maintenance and upkeep improvements

	Fix test stability #276 [https://github.com/jupyter/nbclient/pull/276] (@blink1073 [https://github.com/blink1073])

	Clean up license #274 [https://github.com/jupyter/nbclient/pull/274] (@dcsaba89 [https://github.com/dcsaba89])

	Update codecov link #271 [https://github.com/jupyter/nbclient/pull/271] (@blink1073 [https://github.com/blink1073])

	Add spelling and docstring enforcement #269 [https://github.com/jupyter/nbclient/pull/269] (@blink1073 [https://github.com/blink1073])

	Adopt ruff and address lint #267 [https://github.com/jupyter/nbclient/pull/267] (@blink1073 [https://github.com/blink1073])

Other merged PRs

	Add coalesce_streams #279 [https://github.com/jupyter/nbclient/pull/279] (@davidbrochart [https://github.com/davidbrochart])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2022-11-29&to=2023-04-03&type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Ablink1073+updated%3A2022-11-29..2023-04-03&type=Issues] | @davidbrochart [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adavidbrochart+updated%3A2022-11-29..2023-04-03&type=Issues] | @dcsaba89 [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adcsaba89+updated%3A2022-11-29..2023-04-03&type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Apre-commit-ci+updated%3A2022-11-29..2023-04-03&type=Issues]

0.7.2

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.7.1...e6f8b9f7001f9988a29bb011a0f6052987e6507a])

Merged PRs

	Allow space after In #264 [https://github.com/jupyter/nbclient/pull/264] (@davidbrochart [https://github.com/davidbrochart])

	Fix jupyter_core pinning #263 [https://github.com/jupyter/nbclient/pull/263] (@davidbrochart [https://github.com/davidbrochart])

	Update README, add Python 3.11 #260 [https://github.com/jupyter/nbclient/pull/260] (@davidbrochart [https://github.com/davidbrochart])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2022-11-29&to=2022-11-29&type=c])

@davidbrochart [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adavidbrochart+updated%3A2022-11-29..2022-11-29&type=Issues]

0.7.1

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.7.0...168340e8313e63fd9e037280f98ed22d47e2231b])

Maintenance and upkeep improvements

	CI Refactor #257 [https://github.com/jupyter/nbclient/pull/257] (@blink1073 [https://github.com/blink1073])

Other merged PRs

	Remove nest-asyncio #259 [https://github.com/jupyter/nbclient/pull/259] (@davidbrochart [https://github.com/davidbrochart])

	Add upper bound to dependencies #258 [https://github.com/jupyter/nbclient/pull/258] (@davidbrochart [https://github.com/davidbrochart])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2022-10-06&to=2022-11-29&type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Ablink1073+updated%3A2022-10-06..2022-11-29&type=Issues] | @davidbrochart [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adavidbrochart+updated%3A2022-10-06..2022-11-29&type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Apre-commit-ci+updated%3A2022-10-06..2022-11-29&type=Issues]

0.7.0

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.6.8...449f17d0374f43694d2203d216c97dd4ac7f2c0e])

Maintenance and upkeep improvements

	Cleanup CI #254 [https://github.com/jupyter/nbclient/pull/254] (@blink1073 [https://github.com/blink1073])

	Handle client 8 support #253 [https://github.com/jupyter/nbclient/pull/253] (@blink1073 [https://github.com/blink1073])

Other merged PRs

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2022-09-09&to=2022-10-06&type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Ablink1073+updated%3A2022-09-09..2022-10-06&type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Apre-commit-ci+updated%3A2022-09-09..2022-10-06&type=Issues]

0.6.8

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.6.7...f7d72b2c6937fc30add18b7413f89b691d1710be])

Merged PRs

	Fix tests compatibility with IPython 8.5.0 #251 [https://github.com/jupyter/nbclient/pull/251] (@frenzymadness [https://github.com/frenzymadness])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2022-08-23&to=2022-09-09&type=c])

@davidbrochart [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adavidbrochart+updated%3A2022-08-23..2022-09-09&type=Issues] | @frenzymadness [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Afrenzymadness+updated%3A2022-08-23..2022-09-09&type=Issues]

0.6.7

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.6.6...979fb908dc133cc80a698c74d9b3d9d8af6c7bde])

Merged PRs

	Fix tests for ipywidgets 8 #246 [https://github.com/jupyter/nbclient/pull/246] (@frenzymadness [https://github.com/frenzymadness])

	[pre-commit.ci] pre-commit autoupdate #236 [https://github.com/jupyter/nbclient/pull/236] (@pre-commit-ci [https://github.com/pre-commit-ci])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2022-07-01&to=2022-08-23&type=c])

@frenzymadness [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Afrenzymadness+updated%3A2022-07-01..2022-08-23&type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Apre-commit-ci+updated%3A2022-07-01..2022-08-23&type=Issues]

0.6.6

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.6.5...b4a7cebf0238d4fbe814e19afbee8df3f610e80d])

Merged PRs

	Start new client if needed in blocking setup_kernel #241 [https://github.com/jupyter/nbclient/pull/241] (@davidbrochart [https://github.com/davidbrochart])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2022-06-30&to=2022-07-01&type=c])

@davidbrochart [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adavidbrochart+updated%3A2022-06-30..2022-07-01&type=Issues]

0.6.5

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.6.4...6aed8bec58d69004d3b6687c8bf589f175630f8d])

Merged PRs

	Start new client if needed #239 [https://github.com/jupyter/nbclient/pull/239] (@davidbrochart [https://github.com/davidbrochart])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2022-05-31&to=2022-06-30&type=c])

@davidbrochart [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adavidbrochart+updated%3A2022-05-31..2022-06-30&type=Issues]

0.6.4

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.6.3...01465b8d8597efa81f54f713ad3944fe963ab453])

Merged PRs

	Make sure kernel is cleaned up in case an error occurred while starting kernel client #234 [https://github.com/jupyter/nbclient/pull/234] (@CiprianAnton [https://github.com/CiprianAnton])

	Suppress most warnings in tests #232 [https://github.com/jupyter/nbclient/pull/232] (@davidbrochart [https://github.com/davidbrochart])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2022-05-09&to=2022-05-31&type=c])

@CiprianAnton [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3ACiprianAnton+updated%3A2022-05-09..2022-05-31&type=Issues] | @davidbrochart [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adavidbrochart+updated%3A2022-05-09..2022-05-31&type=Issues]

0.6.3

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.6.2...61d36ce423b00231833c737f59041f33d72a7bb3])

Bugs fixed

	Clean up docs and typings #230 [https://github.com/jupyter/nbclient/pull/230] (@blink1073 [https://github.com/blink1073])

Documentation improvements

	Clean up docs and typings #230 [https://github.com/jupyter/nbclient/pull/230] (@blink1073 [https://github.com/blink1073])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2022-05-03&to=2022-05-09&type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Ablink1073+updated%3A2022-05-03..2022-05-09&type=Issues] | @chrisjsewell [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Achrisjsewell+updated%3A2022-05-03..2022-05-09&type=Issues] | @davidbrochart [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adavidbrochart+updated%3A2022-05-03..2022-05-09&type=Issues] | @meeseeksmachine [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Ameeseeksmachine+updated%3A2022-05-03..2022-05-09&type=Issues]

0.6.2

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.6.1...bd36f50a299fb2e0656386ec487c2bbc67a9a1c4])

Merged PRs

	Fix documentation generation #228 [https://github.com/jupyter/nbclient/pull/228] (@davidbrochart [https://github.com/davidbrochart])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2022-05-03&to=2022-05-03&type=c])

@davidbrochart [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adavidbrochart+updated%3A2022-05-03..2022-05-03&type=Issues]

0.6.1

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.6.0...571a65faa7b86bb647567373a529d9d8df38dd2f])

Merged PRs

	[pre-commit.ci] pre-commit autoupdate #225 [https://github.com/jupyter/nbclient/pull/225] (@pre-commit-ci [https://github.com/pre-commit-ci])

	Add error_on_interrupt trait #224 [https://github.com/jupyter/nbclient/pull/224] (@davidbrochart [https://github.com/davidbrochart])

	Fix typo #223 [https://github.com/jupyter/nbclient/pull/223] (@davidbrochart [https://github.com/davidbrochart])

	Add on_cell_executed hook #222 [https://github.com/jupyter/nbclient/pull/222] (@davidbrochart [https://github.com/davidbrochart])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2022-04-12&to=2022-05-03&type=c])

@brichet [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Abrichet+updated%3A2022-04-12..2022-05-03&type=Issues] | @davidbrochart [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adavidbrochart+updated%3A2022-04-12..2022-05-03&type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Apre-commit-ci+updated%3A2022-04-12..2022-05-03&type=Issues]

0.6.0

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.5.13...295e0eee4a6b9c5c0ee0d490b4c4058a95c6cb79])

Maintenance and upkeep improvements

	Fix typings and update mypy settings #220 [https://github.com/jupyter/nbclient/pull/220] (@blink1073 [https://github.com/blink1073])

	Add missing dep on testpath #219 [https://github.com/jupyter/nbclient/pull/219] (@blink1073 [https://github.com/blink1073])

	Add more pre-commit hooks and update flake8 #218 [https://github.com/jupyter/nbclient/pull/218] (@blink1073 [https://github.com/blink1073])

Documentation improvements

	Clean up docs handling #216 [https://github.com/jupyter/nbclient/pull/216] (@blink1073 [https://github.com/blink1073])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2022-03-11&to=2022-04-12&type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Ablink1073+updated%3A2022-03-11..2022-04-12&type=Issues]

0.5.13

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.5.12...af2315aefbd8d08c1d6a473c289beef1e8ebbecb])

Merged PRs

	Drop ipython_genutils #209 [https://github.com/jupyter/nbclient/pull/209] (@davidbrochart [https://github.com/davidbrochart])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2022-03-06&to=2022-03-11&type=c])

@davidbrochart [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adavidbrochart+updated%3A2022-03-06..2022-03-11&type=Issues]

0.5.12

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.5.11...d20e29e803e5a22379f7a1356e7cf55d4649e9cb])

Merged PRs

	Require traitlets>=5.0.0 #204 [https://github.com/jupyter/nbclient/pull/204] (@davidbrochart [https://github.com/davidbrochart])

	Extend the ignored part of IPython outputs #202 [https://github.com/jupyter/nbclient/pull/202] (@frenzymadness [https://github.com/frenzymadness])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2022-02-14&to=2022-03-06&type=c])

@davidbrochart [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adavidbrochart+updated%3A2022-02-14..2022-03-06&type=Issues] | @frenzymadness [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Afrenzymadness+updated%3A2022-02-14..2022-03-06&type=Issues]

0.5.11

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.5.10...050c7da89a98159e6361b1ad0dbefd215db5f816])

Merged PRs

	Pin ipython<8 in tests #198 [https://github.com/jupyter/nbclient/pull/198] (@davidbrochart [https://github.com/davidbrochart])

	Clear execution metadata, prefer msg header date when recording times #195 [https://github.com/jupyter/nbclient/pull/195] (@kevin-bates [https://github.com/kevin-bates])

	Client hooks #188 [https://github.com/jupyter/nbclient/pull/188] (@devintang3 [https://github.com/devintang3])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2022-01-13&to=2022-02-14&type=c])

@davidbrochart [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adavidbrochart+updated%3A2022-01-13..2022-02-14&type=Issues] | @devintang3 [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adevintang3+updated%3A2022-01-13..2022-02-14&type=Issues] | @kevin-bates [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Akevin-bates+updated%3A2022-01-13..2022-02-14&type=Issues]

0.5.10

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.5.9...e82c5d8d064ac1097f4e12f387b4c47ea5c576ff])

Merged PRs

	Fix ipywidgets version in tests #192 [https://github.com/jupyter/nbclient/pull/192] (@martinRenou [https://github.com/martinRenou])

	Compatibility with IPython 8 where tracebacks are different #190 [https://github.com/jupyter/nbclient/pull/190] (@frenzymadness [https://github.com/frenzymadness])

	Drop tox #187 [https://github.com/jupyter/nbclient/pull/187] (@davidbrochart [https://github.com/davidbrochart])

	Update README #185 [https://github.com/jupyter/nbclient/pull/185] (@davidbrochart [https://github.com/davidbrochart])

	Drop python3.6, test python3.10 #184 [https://github.com/jupyter/nbclient/pull/184] (@davidbrochart [https://github.com/davidbrochart])

	Fix typos #182 [https://github.com/jupyter/nbclient/pull/182] (@kianmeng [https://github.com/kianmeng])

	Use codecov Github action v2 #168 [https://github.com/jupyter/nbclient/pull/168] (@takluyver [https://github.com/takluyver])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2021-11-19&to=2022-01-13&type=c])

@davidbrochart [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adavidbrochart+updated%3A2021-11-19..2022-01-13&type=Issues] | @frenzymadness [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Afrenzymadness+updated%3A2021-11-19..2022-01-13&type=Issues] | @kianmeng [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Akianmeng+updated%3A2021-11-19..2022-01-13&type=Issues] | @martinRenou [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3AmartinRenou+updated%3A2021-11-19..2022-01-13&type=Issues] | @takluyver [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Atakluyver+updated%3A2021-11-19..2022-01-13&type=Issues]

0.5.9

(Full Changelog [https://github.com/jupyter/nbclient/compare/v0.5.8...0146681d7ffd62cbc675c8d1463a2b016a3d3008])

Merged PRs

	Remove jupyter-run, keep jupyter-execute #180 [https://github.com/jupyter/nbclient/pull/180] (@davidbrochart [https://github.com/davidbrochart])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2021-11-12&to=2021-11-19&type=c])

@davidbrochart [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adavidbrochart+updated%3A2021-11-12..2021-11-19&type=Issues]

0.5.8

No merged PRs

0.5.7

(Full Changelog [https://github.com/jupyter/nbclient/compare/0.5.6...d86c404536fb443898b631acaf29ce7ad88b06d9])

Merged PRs

	Prepare for use with Jupyter Releaser #175 [https://github.com/jupyter/nbclient/pull/175] (@davidbrochart [https://github.com/davidbrochart])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbclient/graphs/contributors?from=2021-11-12&to=2021-11-12&type=c])

@davidbrochart [https://github.com/search?q=repo%3Ajupyter%2Fnbclient+involves%3Adavidbrochart+updated%3A2021-11-12..2021-11-12&type=Issues]

0.5.6

	Changed jupyter execute to jupyter run #173 [https://github.com/jupyter/nbclient/pull/173] (@palewire [https://github.com/palewire])

	Move IPYKERNEL_CELL_NAME from tox to pytest #172 [https://github.com/jupyter/nbclient/pull/172] (@frenzymadness [https://github.com/frenzymadness])

0.5.5

	Added CLI to README #170 [https://github.com/jupyter/nbclient/pull/170] (@palewire [https://github.com/palewire])

	Add “jupyter execute” command-line interface #165 [https://github.com/jupyter/nbclient/pull/165] (@palewire [https://github.com/palewire])

	Fix: updating buffers overwrote previous buffers #169 [https://github.com/jupyter/nbclient/pull/169] (@maartenbreddels [https://github.com/maartenbreddels])

	Fix tests for ipykernel without debugpy #166 [https://github.com/jupyter/nbclient/pull/166] (@frenzymadness [https://github.com/frenzymadness])

	gitignore Pipfile #164 [https://github.com/jupyter/nbclient/pull/164] (@palewire [https://github.com/palewire])

	Fixed CONTRIBUTING.md link #163 [https://github.com/jupyter/nbclient/pull/163] (@palewire [https://github.com/palewire])

	Fix typo #162 [https://github.com/jupyter/nbclient/pull/162] (@The-Compiler [https://github.com/The-Compiler])

	Move format & lint to pre-commit #161 [https://github.com/jupyter/nbclient/pull/161] (@chrisjsewell [https://github.com/chrisjsewell])

	Add skip-execution cell tag functionality #151 [https://github.com/jupyter/nbclient/pull/151] (@chrisjsewell [https://github.com/chrisjsewell])

0.5.4

	Replace km.cleanup with km.cleanup_resources #152 [https://github.com/jupyter/nbclient/pull/152] (@davidbrochart [https://github.com/davidbrochart])

	Use async generator backport only on old python #154 [https://github.com/jupyter/nbclient/pull/154] (@mkoeppe [https://github.com/mkoeppe])

	Support parsing of IPython dev version #150 [https://github.com/jupyter/nbclient/pull/150] (@cphyc [https://github.com/cphyc])

	Set IPYKERNEL_CELL_NAME = <IPY-INPUT> #147 [https://github.com/jupyter/nbclient/pull/147] (@davidbrochart [https://github.com/davidbrochart])

	Print useful error message on exception #142 [https://github.com/jupyter/nbclient/pull/142] (@certik [https://github.com/certik])

0.5.3

	Fix ipykernel’s stop_on_error value to take into account raises-exception tag and force_raise_errors #137 [https://github.com/jupyter/nbclient/pull/137]

0.5.2

	Set minimum python version supported to 3.6.1 to avoid 3.6.0 issues

	CellExecutionError is now unpickleable

	Added testing for python 3.9

	Changed travis tests to github actions

	Documentation referencing an old model instead of NotebookClient was fixed

	allow_error_names option was added for a more specific scope of allow_errors to be applied

0.5.1

	Update kernel client class JIT if it’s the synchronous version

	Several documentation fixes / improvements

0.5.0

	Move language_info retrieval before cell execution #102 [https://github.com/jupyter/nbclient/pull/102]

	HistoryManager setting for ipython kernels no longer applies twice (fix for 5.0 trailets release)

	Improved error handling around language_info missing

	(async_)start_new_kernel_client is now split into (async_)start_new_kernel and (async_)start_new_kernel_client

0.4.2 - 0.4.3

These patch releases were removed due to backwards incompatible changes that should have been a minor release.
If you were using these versions for the couple days they were up, move to 0.5.0 and you shouldn’t have any issues.

0.4.1

	Python type hinting added to most interfaces! #83 [https://github.com/jupyter/nbclient/pull/83]

	Several documentation fixes and improvements were made #86 [https://github.com/jupyter/nbclient/pull/86]

	An asynchronous heart beat check was added to correctly raise a DeadKernelError when kernels die unexpectantly #90 [https://github.com/jupyter/nbclient/pull/90]

0.4.0

Major Changes

	Use KernelManager’s graceful shutdown rather than KILLing kernels #64 [https://github.com/jupyter/nbclient/pull/64]

	Mimic an Output widget at the frontend so that the Output widget behaves correctly #68 [https://github.com/jupyter/nbclient/pull/68]

	Nested asyncio is automatic, and works with Tornado #71 [https://github.com/jupyter/nbclient/pull/71]

	async_execute now has a reset_kc argument to control if the client is reset upon execution request #53 [https://github.com/jupyter/nbclient/pull/53]

Fixes

	Fix OSError: [WinError 6] The handle is invalid for windows/python<3.7 #77 [https://github.com/jupyter/nbclient/pull/77]

	Async wrapper Exceptions no longer loose their caused exception information #65 [https://github.com/jupyter/nbclient/pull/65]

	extra_arguments are now configurable by config settings #66 [https://github.com/jupyter/nbclient/pull/66]

Operational

	Cross-OS testing now run on PRs via Github Actions #63 [https://github.com/jupyter/nbclient/pull/63]

0.3.1

Fixes

	Check that a kernel manager exists before cleaning up the kernel #61 [https://github.com/jupyter/nbclient/pull/61]

	Force client class to be async when kernel manager is MultiKernelManager #55 [https://github.com/jupyter/nbclient/pull/55]

	Replace pip install with conda install in Binder #54 [https://github.com/jupyter/nbclient/pull/54]

0.3.0

Major Changes

	The (async_)start_new_kernel_client method now supports starting a new client when its kernel manager (self.km) is a MultiKernelManager. The method now returns the kernel id in addition to the kernel client. If the kernel manager was a KernelManager, the returned kernel id is None. #51 [https://github.com/jupyter/nbclient/pull/51]

	Added sphinx-book-theme for documentation. Added a CircleCI job to let us preview the built documentation in a PR. #50 [https://github.com/jupyter/nbclient/pull/50]

	Added reset_kc option to reset_execution_trackers, so that the kernel client can be reset and a new one created in calls to (async_)execute #44 [https://github.com/jupyter/nbclient/pull/44]

Docs

	Fixed documentation #46 [https://github.com/jupyter/nbclient/pull/46] #47 [https://github.com/jupyter/nbclient/pull/47]

	Added documentation status badge to the README

	Removed conda from documentation build

0.2.0

Major Changes

	Async support is now available on the client. Methods that support async have an async_ prefix and can be awaited #10 [https://github.com/jupyter/nbclient/pull/10] #35 [https://github.com/jupyter/nbclient/pull/35] #37 [https://github.com/jupyter/nbclient/pull/37] #38 [https://github.com/jupyter/nbclient/pull/38]

	Dropped support for Python 3.5 due to async compatibility issues #34 [https://github.com/jupyter/nbclient/pull/34]

	Notebook documents now include the new kernel timing fields [https://github.com/jupyter/nbformat/pull/144] #32 [https://github.com/jupyter/nbclient/pull/32]

Fixes

	Memory and process leaks from nbclient should now be fixed #34 [https://github.com/jupyter/nbclient/pull/34]

	Notebook execution exceptions now include error information in addition to the message #41 [https://github.com/jupyter/nbclient/pull/41]

Docs

	Added binder examples [https://mybinder.org/v2/gh/jupyter/nbclient/master?filepath=binder%2Frun_nbclient.ipynb] / tests #7 [https://github.com/jupyter/nbclient/pull/7]

	Added changelog to docs #22 [https://github.com/jupyter/nbclient/pull/22]

	Doc typo fixes #27 [https://github.com/jupyter/nbclient/pull/27] #30 [https://github.com/jupyter/nbclient/pull/30]

0.1.0

	Initial release – moved out of nbconvert 6.0.0-a0

Reference

This part of the documentation lists the full API reference of all public classes and functions.

	nbclient package
	Subpackages

	Submodules

	nbclient.client module

	nbclient.exceptions module

	Module contents

	Config file and command line options
	Options

	nbclient
	nbclient package

nbclient package

Subpackages

Submodules

nbclient.client module

nbclient implementation.

	
class nbclient.client.NotebookClient(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Bases: LoggingConfigurable

Encompasses a Client for executing cells in a notebook

	
allow_error_names

	List of error names which won’t stop the execution. Use this if the
allow_errors option it too general and you want to allow only
specific kinds of errors.

	
allow_errors

	If False (default), when a cell raises an error the
execution is stopped and a CellExecutionError
is raised, except if the error name is in
allow_error_names.
If True, execution errors are ignored and the execution
is continued until the end of the notebook. Output from
exceptions is included in the cell output in both cases.

	
async async_execute(reset_kc: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → NotebookNode

	Executes each code cell.

	Parameters:

	kwargs – Any option for self.kernel_manager_class.start_kernel(). Because
that defaults to AsyncKernelManager, this will likely include options
accepted by jupyter_client.AsyncKernelManager.start_kernel(),
which includes cwd.

reset_kc if True, the kernel client will be reset and a new one
will be created (default: False).

	Returns:

	nb – The executed notebook.

	Return type:

	NotebookNode

	
async async_execute_cell(cell: NotebookNode, cell_index: int [https://docs.python.org/3/library/functions.html#int], execution_count: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, store_history: bool [https://docs.python.org/3/library/functions.html#bool] = True) → NotebookNode

	Executes a single code cell.

To execute all cells see execute().

	Parameters:

	
	cell (nbformat.NotebookNode) – The cell which is currently being processed.

	cell_index (int [https://docs.python.org/3/library/functions.html#int]) – The position of the cell within the notebook object.

	execution_count (int [https://docs.python.org/3/library/functions.html#int]) – The execution count to be assigned to the cell (default: Use kernel response)

	store_history (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines if history should be stored in the kernel (default: False).
Specific to ipython kernels, which can store command histories.

	Returns:

	output – The execution output payload (or None for no output).

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	CellExecutionError – If execution failed and should raise an exception, this will be raised
 with defaults about the failure.

	Returns:

	cell – The cell which was just processed.

	Return type:

	NotebookNode

	
async_setup_kernel(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → AsyncGenerator [https://docs.python.org/3/library/typing.html#typing.AsyncGenerator][None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Context manager for setting up the kernel to execute a notebook.

This assigns the Kernel Manager (self.km) if missing and Kernel Client(self.kc).

When control returns from the yield it stops the client’s zmq channels, and shuts
down the kernel.

Handlers for SIGINT and SIGTERM are also added to cleanup in case of unexpected shutdown.

	
async async_start_new_kernel(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Creates a new kernel.

	Parameters:

	kwargs – Any options for self.kernel_manager_class.start_kernel(). Because
that defaults to AsyncKernelManager, this will likely include options
accepted by AsyncKernelManager.start_kernel(), which includes cwd.

	
async async_start_new_kernel_client() → KernelClient

	Creates a new kernel client.

	Returns:

	kc – Kernel client as created by the kernel manager km.

	Return type:

	KernelClient

	
async async_wait_for_reply(msg_id: str [https://docs.python.org/3/library/stdtypes.html#str], cell: NotebookNode | None [https://docs.python.org/3/library/constants.html#None] = None) → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None]

	Wait for a message reply.

	
clear_display_id_mapping(cell_index: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Clear a display id mapping for a cell.

	
clear_output(outs: list [https://docs.python.org/3/library/stdtypes.html#list][NotebookNode], msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], cell_index: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Clear output.

	
coalesce_streams

	Merge all stream outputs with shared names into single streams.

	
create_kernel_manager() → KernelManager

	Creates a new kernel manager.

	Returns:

	km – Kernel manager whose client class is asynchronous.

	Return type:

	KernelManager

	
display_data_priority

	An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.

	
error_on_timeout

	If a cell execution was interrupted after a timeout, don’t wait for
the execute_reply from the kernel (e.g. KeyboardInterrupt error).
Instead, return an execute_reply with the given error, which should
be of the following form:

{
 'ename': str, # Exception name, as a string
 'evalue': str, # Exception value, as a string
 'traceback': list(str), # traceback frames, as strings
}

	
execute(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Executes each code cell.

	Parameters:

	kwargs – Any option for self.kernel_manager_class.start_kernel(). Because
that defaults to AsyncKernelManager, this will likely include options
accepted by jupyter_client.AsyncKernelManager.start_kernel(),
which includes cwd.

reset_kc if True, the kernel client will be reset and a new one
will be created (default: False).

	Returns:

	nb – The executed notebook.

	Return type:

	NotebookNode

	
execute_cell(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Executes a single code cell.

To execute all cells see execute().

	Parameters:

	
	cell (nbformat.NotebookNode) – The cell which is currently being processed.

	cell_index (int [https://docs.python.org/3/library/functions.html#int]) – The position of the cell within the notebook object.

	execution_count (int [https://docs.python.org/3/library/functions.html#int]) – The execution count to be assigned to the cell (default: Use kernel response)

	store_history (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines if history should be stored in the kernel (default: False).
Specific to ipython kernels, which can store command histories.

	Returns:

	output – The execution output payload (or None for no output).

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	CellExecutionError – If execution failed and should raise an exception, this will be raised
 with defaults about the failure.

	Returns:

	cell – The cell which was just processed.

	Return type:

	NotebookNode

	
extra_arguments

	An instance of a Python list.

	
force_raise_errors

	If False (default), errors from executing the notebook can be
allowed with a raises-exception tag on a single cell, or the
allow_errors or allow_error_names configurable options for
all cells. An allowed error will be recorded in notebook output, and
execution will continue. If an error occurs when it is not
explicitly allowed, a CellExecutionError will be raised.
If True, CellExecutionError will be raised for any error that occurs
while executing the notebook. This overrides the allow_errors
and allow_error_names options and the raises-exception cell
tag.

	
handle_comm_msg(outs: list [https://docs.python.org/3/library/stdtypes.html#list][NotebookNode], msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], cell_index: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Handle a comm message.

	
interrupt_on_timeout

	If execution of a cell times out, interrupt the kernel and
continue executing other cells rather than throwing an error and
stopping.

	
iopub_timeout

	The time to wait (in seconds) for IOPub output. This generally
doesn’t need to be set, but on some slow networks (such as CI
systems) the default timeout might not be long enough to get all
messages.

	
ipython_hist_file

	Path to file to use for SQLite history database for an IPython kernel.

The specific value :memory: (including the colon
at both end but not the back ticks), avoids creating a history file. Otherwise, IPython
will create a history file for each kernel.

When running kernels simultaneously (e.g. via multiprocessing) saving history a single
SQLite file can result in database errors, so using :memory: is recommended in
non-interactive contexts.

	
kernel_manager_class

	The kernel manager class to use.

	
kernel_name

	Name of kernel to use to execute the cells.
If not set, use the kernel_spec embedded in the notebook.

	
on_cell_complete

	A callable which executes after a cell execution is complete. It is
called even when a cell results in a failure.
Called with kwargs cell and cell_index.

	
on_cell_error

	A callable which executes when a cell execution results in an error.
This is executed even if errors are suppressed with cell_allows_errors.
Called with kwargs cell`, ``cell_index and execute_reply.

	
on_cell_execute

	A callable which executes just before a code cell is executed.
Called with kwargs cell and cell_index.

	
on_cell_executed

	A callable which executes just after a code cell is executed, whether
or not it results in an error.
Called with kwargs cell, cell_index and execute_reply.

	
on_cell_start

	A callable which executes before a cell is executed and before non-executing cells
are skipped.
Called with kwargs cell and cell_index.

	
on_comm_open_jupyter_widget(msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) → Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None]

	Handle a jupyter widget comm open.

	
on_notebook_complete

	A callable which executes after the kernel is cleaned up.
Called with kwargs notebook.

	
on_notebook_error

	A callable which executes when the notebook encounters an error.
Called with kwargs notebook.

	
on_notebook_start

	A callable which executes after the kernel manager and kernel client are setup, and
cells are about to execute.
Called with kwargs notebook.

	
output(outs: list [https://docs.python.org/3/library/stdtypes.html#list][NotebookNode], msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], display_id: str [https://docs.python.org/3/library/stdtypes.html#str], cell_index: int [https://docs.python.org/3/library/functions.html#int]) → NotebookNode | None [https://docs.python.org/3/library/constants.html#None]

	Handle output.

	
process_message(msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], cell: NotebookNode, cell_index: int [https://docs.python.org/3/library/functions.html#int]) → NotebookNode | None [https://docs.python.org/3/library/constants.html#None]

	Processes a kernel message, updates cell state, and returns the
resulting output object that was appended to cell.outputs.

The input argument cell is modified in-place.

	Parameters:

	
	msg (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The kernel message being processed.

	cell (nbformat.NotebookNode) – The cell which is currently being processed.

	cell_index (int [https://docs.python.org/3/library/functions.html#int]) – The position of the cell within the notebook object.

	Returns:

	output – The execution output payload (or None for no output).

	Return type:

	NotebookNode

	Raises:

	CellExecutionComplete – Once a message arrives which indicates computation completeness.

	
raise_on_iopub_timeout

	If False (default), then the kernel will continue waiting for
iopub messages until it receives a kernel idle message, or until a
timeout occurs, at which point the currently executing cell will be
skipped. If True, then an error will be raised after the first
timeout. This option generally does not need to be used, but may be
useful in contexts where there is the possibility of executing
notebooks with memory-consuming infinite loops.

	
record_timing

	If True (default), then the execution timings of each cell will
be stored in the metadata of the notebook.

	
register_output_hook(msg_id: str [https://docs.python.org/3/library/stdtypes.html#str], hook: OutputWidget) → None [https://docs.python.org/3/library/constants.html#None]

	Registers an override object that handles output/clear_output instead.

Multiple hooks can be registered, where the last one will be used (stack based)

	
remove_output_hook(msg_id: str [https://docs.python.org/3/library/stdtypes.html#str], hook: OutputWidget) → None [https://docs.python.org/3/library/constants.html#None]

	Unregisters an override object that handles output/clear_output instead

	
reset_execution_trackers() → None [https://docs.python.org/3/library/constants.html#None]

	Resets any per-execution trackers.

	
resources: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Additional resources used in the conversion process. For example,
passing {'metadata': {'path': run_path}} sets the
execution path to run_path.

	
set_widgets_metadata() → None [https://docs.python.org/3/library/constants.html#None]

	Set with widget metadata.

	
setup_kernel(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Context manager for setting up the kernel to execute a notebook.

The assigns the Kernel Manager (self.km) if missing and Kernel Client(self.kc).

When control returns from the yield it stops the client’s zmq channels, and shuts
down the kernel.

	
shell_timeout_interval

	The time to wait (in seconds) for Shell output before retrying.
This generally doesn’t need to be set, but if one needs to check
for dead kernels at a faster rate this can help.

	
shutdown_kernel

	If graceful (default), then the kernel is given time to clean
up after executing all cells, e.g., to execute its atexit hooks.
If immediate, then the kernel is signaled to immediately
terminate.

	
skip_cells_with_tag

	Name of the cell tag to use to denote a cell that should be skipped.

	
start_new_kernel(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Creates a new kernel.

	Parameters:

	kwargs – Any options for self.kernel_manager_class.start_kernel(). Because
that defaults to AsyncKernelManager, this will likely include options
accepted by AsyncKernelManager.start_kernel(), which includes cwd.

	
start_new_kernel_client(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Creates a new kernel client.

	Returns:

	kc – Kernel client as created by the kernel manager km.

	Return type:

	KernelClient

	
startup_timeout

	The time to wait (in seconds) for the kernel to start.
If kernel startup takes longer, a RuntimeError is
raised.

	
store_widget_state

	If True (default), then the state of the Jupyter widgets created
at the kernel will be stored in the metadata of the notebook.

	
timeout

	The time to wait (in seconds) for output from executions.
If a cell execution takes longer, a TimeoutError is raised.

None or -1 will disable the timeout. If timeout_func is set,
it overrides timeout.

	
timeout_func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]] | None [https://docs.python.org/3/library/constants.html#None]

	A callable which, when given the cell source as input,
returns the time to wait (in seconds) for output from cell
executions. If a cell execution takes longer, a TimeoutError
is raised.

Returning None or -1 will disable the timeout for the cell.
Not setting timeout_func will cause the client to
default to using the timeout trait for all cells. The
timeout_func trait overrides timeout if it is not None.

	
wait_for_reply(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Wait for a message reply.

	
nbclient.client.execute(nb: NotebookNode, cwd: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, km: KernelManager | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → NotebookNode

	Execute a notebook’s code, updating outputs within the notebook object.

This is a convenient wrapper around NotebookClient. It returns the
modified notebook object.

	Parameters:

	
	nb (NotebookNode) – The notebook object to be executed

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If supplied, the kernel will run in this directory

	km (AsyncKernelManager, optional) – If supplied, the specified kernel manager will be used for code execution.

	kwargs – Any other options for NotebookClient, e.g. timeout, kernel_name

	
nbclient.client.timestamp(msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the timestamp for a message.

nbclient.exceptions module

Exceptions for nbclient.

	
exception nbclient.exceptions.CellControlSignal

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

A custom exception used to indicate that the exception is used for cell
control actions (not the best model, but it’s needed to cover existing
behavior without major refactors).

	
exception nbclient.exceptions.CellExecutionComplete

	Bases: CellControlSignal

Used as a control signal for cell execution across execute_cell and
process_message function calls. Raised when all execution requests
are completed and no further messages are expected from the kernel
over zeromq channels.

	
exception nbclient.exceptions.CellExecutionError(traceback: str [https://docs.python.org/3/library/stdtypes.html#str], ename: str [https://docs.python.org/3/library/stdtypes.html#str], evalue: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: CellControlSignal

Custom exception to propagate exceptions that are raised during
notebook execution to the caller. This is mostly useful when
using nbconvert as a library, since it allows to deal with
failures gracefully.

	
classmethod from_cell_and_msg(cell: NotebookNode, msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) → CellExecutionError

	Instantiate from a code cell object and a message contents
(message is either execute_reply or error)

	
exception nbclient.exceptions.CellTimeoutError

	Bases: TimeoutError [https://docs.python.org/3/library/exceptions.html#TimeoutError], CellControlSignal

A custom exception to capture when a cell has timed out during execution.

	
classmethod error_from_timeout_and_cell(msg: str [https://docs.python.org/3/library/stdtypes.html#str], timeout: int [https://docs.python.org/3/library/functions.html#int], cell: NotebookNode) → CellTimeoutError

	Create an error from a timeout on a cell.

	
exception nbclient.exceptions.DeadKernelError

	Bases: RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

A dead kernel error.

Module contents

	
class nbclient.NotebookClient(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Bases: LoggingConfigurable

Encompasses a Client for executing cells in a notebook

	
allow_error_names

	List of error names which won’t stop the execution. Use this if the
allow_errors option it too general and you want to allow only
specific kinds of errors.

	
allow_errors

	If False (default), when a cell raises an error the
execution is stopped and a CellExecutionError
is raised, except if the error name is in
allow_error_names.
If True, execution errors are ignored and the execution
is continued until the end of the notebook. Output from
exceptions is included in the cell output in both cases.

	
async async_execute(reset_kc: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → NotebookNode

	Executes each code cell.

	Parameters:

	kwargs – Any option for self.kernel_manager_class.start_kernel(). Because
that defaults to AsyncKernelManager, this will likely include options
accepted by jupyter_client.AsyncKernelManager.start_kernel(),
which includes cwd.

reset_kc if True, the kernel client will be reset and a new one
will be created (default: False).

	Returns:

	nb – The executed notebook.

	Return type:

	NotebookNode

	
async async_execute_cell(cell: NotebookNode, cell_index: int [https://docs.python.org/3/library/functions.html#int], execution_count: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, store_history: bool [https://docs.python.org/3/library/functions.html#bool] = True) → NotebookNode

	Executes a single code cell.

To execute all cells see execute().

	Parameters:

	
	cell (nbformat.NotebookNode) – The cell which is currently being processed.

	cell_index (int [https://docs.python.org/3/library/functions.html#int]) – The position of the cell within the notebook object.

	execution_count (int [https://docs.python.org/3/library/functions.html#int]) – The execution count to be assigned to the cell (default: Use kernel response)

	store_history (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines if history should be stored in the kernel (default: False).
Specific to ipython kernels, which can store command histories.

	Returns:

	output – The execution output payload (or None for no output).

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	CellExecutionError – If execution failed and should raise an exception, this will be raised
 with defaults about the failure.

	Returns:

	cell – The cell which was just processed.

	Return type:

	NotebookNode

	
async_setup_kernel(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → AsyncGenerator [https://docs.python.org/3/library/typing.html#typing.AsyncGenerator][None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Context manager for setting up the kernel to execute a notebook.

This assigns the Kernel Manager (self.km) if missing and Kernel Client(self.kc).

When control returns from the yield it stops the client’s zmq channels, and shuts
down the kernel.

Handlers for SIGINT and SIGTERM are also added to cleanup in case of unexpected shutdown.

	
async async_start_new_kernel(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Creates a new kernel.

	Parameters:

	kwargs – Any options for self.kernel_manager_class.start_kernel(). Because
that defaults to AsyncKernelManager, this will likely include options
accepted by AsyncKernelManager.start_kernel(), which includes cwd.

	
async async_start_new_kernel_client() → KernelClient

	Creates a new kernel client.

	Returns:

	kc – Kernel client as created by the kernel manager km.

	Return type:

	KernelClient

	
async async_wait_for_reply(msg_id: str [https://docs.python.org/3/library/stdtypes.html#str], cell: NotebookNode | None [https://docs.python.org/3/library/constants.html#None] = None) → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None]

	Wait for a message reply.

	
clear_display_id_mapping(cell_index: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Clear a display id mapping for a cell.

	
clear_output(outs: list [https://docs.python.org/3/library/stdtypes.html#list][NotebookNode], msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], cell_index: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Clear output.

	
coalesce_streams

	Merge all stream outputs with shared names into single streams.

	
comm_open_handlers: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	

	
create_kernel_manager() → KernelManager

	Creates a new kernel manager.

	Returns:

	km – Kernel manager whose client class is asynchronous.

	Return type:

	KernelManager

	
display_data_priority

	An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.

	
error_on_timeout

	If a cell execution was interrupted after a timeout, don’t wait for
the execute_reply from the kernel (e.g. KeyboardInterrupt error).
Instead, return an execute_reply with the given error, which should
be of the following form:

{
 'ename': str, # Exception name, as a string
 'evalue': str, # Exception value, as a string
 'traceback': list(str), # traceback frames, as strings
}

	
execute(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Executes each code cell.

	Parameters:

	kwargs – Any option for self.kernel_manager_class.start_kernel(). Because
that defaults to AsyncKernelManager, this will likely include options
accepted by jupyter_client.AsyncKernelManager.start_kernel(),
which includes cwd.

reset_kc if True, the kernel client will be reset and a new one
will be created (default: False).

	Returns:

	nb – The executed notebook.

	Return type:

	NotebookNode

	
execute_cell(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Executes a single code cell.

To execute all cells see execute().

	Parameters:

	
	cell (nbformat.NotebookNode) – The cell which is currently being processed.

	cell_index (int [https://docs.python.org/3/library/functions.html#int]) – The position of the cell within the notebook object.

	execution_count (int [https://docs.python.org/3/library/functions.html#int]) – The execution count to be assigned to the cell (default: Use kernel response)

	store_history (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines if history should be stored in the kernel (default: False).
Specific to ipython kernels, which can store command histories.

	Returns:

	output – The execution output payload (or None for no output).

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	CellExecutionError – If execution failed and should raise an exception, this will be raised
 with defaults about the failure.

	Returns:

	cell – The cell which was just processed.

	Return type:

	NotebookNode

	
extra_arguments

	An instance of a Python list.

	
force_raise_errors

	If False (default), errors from executing the notebook can be
allowed with a raises-exception tag on a single cell, or the
allow_errors or allow_error_names configurable options for
all cells. An allowed error will be recorded in notebook output, and
execution will continue. If an error occurs when it is not
explicitly allowed, a CellExecutionError will be raised.
If True, CellExecutionError will be raised for any error that occurs
while executing the notebook. This overrides the allow_errors
and allow_error_names options and the raises-exception cell
tag.

	
handle_comm_msg(outs: list [https://docs.python.org/3/library/stdtypes.html#list][NotebookNode], msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], cell_index: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Handle a comm message.

	
interrupt_on_timeout

	If execution of a cell times out, interrupt the kernel and
continue executing other cells rather than throwing an error and
stopping.

	
iopub_timeout

	The time to wait (in seconds) for IOPub output. This generally
doesn’t need to be set, but on some slow networks (such as CI
systems) the default timeout might not be long enough to get all
messages.

	
ipython_hist_file

	Path to file to use for SQLite history database for an IPython kernel.

The specific value :memory: (including the colon
at both end but not the back ticks), avoids creating a history file. Otherwise, IPython
will create a history file for each kernel.

When running kernels simultaneously (e.g. via multiprocessing) saving history a single
SQLite file can result in database errors, so using :memory: is recommended in
non-interactive contexts.

	
kc: KernelClient | None [https://docs.python.org/3/library/constants.html#None]

	

	
kernel_manager_class

	The kernel manager class to use.

	
kernel_name

	Name of kernel to use to execute the cells.
If not set, use the kernel_spec embedded in the notebook.

	
km: KernelManager | None [https://docs.python.org/3/library/constants.html#None]

	

	
nb: NotebookNode

	

	
on_cell_complete

	A callable which executes after a cell execution is complete. It is
called even when a cell results in a failure.
Called with kwargs cell and cell_index.

	
on_cell_error

	A callable which executes when a cell execution results in an error.
This is executed even if errors are suppressed with cell_allows_errors.
Called with kwargs cell`, ``cell_index and execute_reply.

	
on_cell_execute

	A callable which executes just before a code cell is executed.
Called with kwargs cell and cell_index.

	
on_cell_executed

	A callable which executes just after a code cell is executed, whether
or not it results in an error.
Called with kwargs cell, cell_index and execute_reply.

	
on_cell_start

	A callable which executes before a cell is executed and before non-executing cells
are skipped.
Called with kwargs cell and cell_index.

	
on_comm_open_jupyter_widget(msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) → Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None]

	Handle a jupyter widget comm open.

	
on_notebook_complete

	A callable which executes after the kernel is cleaned up.
Called with kwargs notebook.

	
on_notebook_error

	A callable which executes when the notebook encounters an error.
Called with kwargs notebook.

	
on_notebook_start

	A callable which executes after the kernel manager and kernel client are setup, and
cells are about to execute.
Called with kwargs notebook.

	
output(outs: list [https://docs.python.org/3/library/stdtypes.html#list][NotebookNode], msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], display_id: str [https://docs.python.org/3/library/stdtypes.html#str], cell_index: int [https://docs.python.org/3/library/functions.html#int]) → NotebookNode | None [https://docs.python.org/3/library/constants.html#None]

	Handle output.

	
owns_km: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
process_message(msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], cell: NotebookNode, cell_index: int [https://docs.python.org/3/library/functions.html#int]) → NotebookNode | None [https://docs.python.org/3/library/constants.html#None]

	Processes a kernel message, updates cell state, and returns the
resulting output object that was appended to cell.outputs.

The input argument cell is modified in-place.

	Parameters:

	
	msg (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The kernel message being processed.

	cell (nbformat.NotebookNode) – The cell which is currently being processed.

	cell_index (int [https://docs.python.org/3/library/functions.html#int]) – The position of the cell within the notebook object.

	Returns:

	output – The execution output payload (or None for no output).

	Return type:

	NotebookNode

	Raises:

	CellExecutionComplete – Once a message arrives which indicates computation completeness.

	
raise_on_iopub_timeout

	If False (default), then the kernel will continue waiting for
iopub messages until it receives a kernel idle message, or until a
timeout occurs, at which point the currently executing cell will be
skipped. If True, then an error will be raised after the first
timeout. This option generally does not need to be used, but may be
useful in contexts where there is the possibility of executing
notebooks with memory-consuming infinite loops.

	
record_timing

	If True (default), then the execution timings of each cell will
be stored in the metadata of the notebook.

	
register_output_hook(msg_id: str [https://docs.python.org/3/library/stdtypes.html#str], hook: OutputWidget) → None [https://docs.python.org/3/library/constants.html#None]

	Registers an override object that handles output/clear_output instead.

Multiple hooks can be registered, where the last one will be used (stack based)

	
remove_output_hook(msg_id: str [https://docs.python.org/3/library/stdtypes.html#str], hook: OutputWidget) → None [https://docs.python.org/3/library/constants.html#None]

	Unregisters an override object that handles output/clear_output instead

	
reset_execution_trackers() → None [https://docs.python.org/3/library/constants.html#None]

	Resets any per-execution trackers.

	
resources: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Additional resources used in the conversion process. For example,
passing {'metadata': {'path': run_path}} sets the
execution path to run_path.

	
set_widgets_metadata() → None [https://docs.python.org/3/library/constants.html#None]

	Set with widget metadata.

	
setup_kernel(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Context manager for setting up the kernel to execute a notebook.

The assigns the Kernel Manager (self.km) if missing and Kernel Client(self.kc).

When control returns from the yield it stops the client’s zmq channels, and shuts
down the kernel.

	
shell_timeout_interval

	The time to wait (in seconds) for Shell output before retrying.
This generally doesn’t need to be set, but if one needs to check
for dead kernels at a faster rate this can help.

	
shutdown_kernel

	If graceful (default), then the kernel is given time to clean
up after executing all cells, e.g., to execute its atexit hooks.
If immediate, then the kernel is signaled to immediately
terminate.

	
skip_cells_with_tag

	Name of the cell tag to use to denote a cell that should be skipped.

	
start_new_kernel(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Creates a new kernel.

	Parameters:

	kwargs – Any options for self.kernel_manager_class.start_kernel(). Because
that defaults to AsyncKernelManager, this will likely include options
accepted by AsyncKernelManager.start_kernel(), which includes cwd.

	
start_new_kernel_client(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Creates a new kernel client.

	Returns:

	kc – Kernel client as created by the kernel manager km.

	Return type:

	KernelClient

	
startup_timeout

	The time to wait (in seconds) for the kernel to start.
If kernel startup takes longer, a RuntimeError is
raised.

	
store_widget_state

	If True (default), then the state of the Jupyter widgets created
at the kernel will be stored in the metadata of the notebook.

	
timeout

	The time to wait (in seconds) for output from executions.
If a cell execution takes longer, a TimeoutError is raised.

None or -1 will disable the timeout. If timeout_func is set,
it overrides timeout.

	
timeout_func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]] | None [https://docs.python.org/3/library/constants.html#None]

	A callable which, when given the cell source as input,
returns the time to wait (in seconds) for output from cell
executions. If a cell execution takes longer, a TimeoutError
is raised.

Returning None or -1 will disable the timeout for the cell.
Not setting timeout_func will cause the client to
default to using the timeout trait for all cells. The
timeout_func trait overrides timeout if it is not None.

	
wait_for_reply(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Wait for a message reply.

	
widget_registry: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	

	
nbclient.execute(nb: NotebookNode, cwd: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, km: KernelManager | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → NotebookNode

	Execute a notebook’s code, updating outputs within the notebook object.

This is a convenient wrapper around NotebookClient. It returns the
modified notebook object.

	Parameters:

	
	nb (NotebookNode) – The notebook object to be executed

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If supplied, the kernel will run in this directory

	km (AsyncKernelManager, optional) – If supplied, the specified kernel manager will be used for code execution.

	kwargs – Any other options for NotebookClient, e.g. timeout, kernel_name

Config file and command line options

Jupyter nbclient can be run with a variety of command line arguments.
A list of available options can be found below in the options section.

Options

This list of options can be generated by running the following and hitting
enter:

$ jupyter execute --help-all

	Application.log_datefmtUnicode
	Default: '%Y-%m-%d %H:%M:%S'

The date format used by logging formatters for %(asctime)s

	Application.log_formatUnicode
	Default: '[%(name)s]%(highlevel)s %(message)s'

The Logging format template

	Application.log_levelany of 0``|``10``|``20``|``30``|``40``|``50``|’DEBUG’|’INFO’|’WARN’|’ERROR’|’CRITICAL’``
	Default: 30

Set the log level by value or name.

	Application.logging_configDict
	Default: {}

Configure additional log handlers.

The default stderr logs handler is configured by the
log_level, log_datefmt and log_format settings.

This configuration can be used to configure additional handlers
(e.g. to output the log to a file) or for finer control over the
default handlers.

If provided this should be a logging configuration dictionary, for
more information see:
https://docs.python.org/3/library/logging.config.html#logging-config-dictschema

This dictionary is merged with the base logging configuration which
defines the following:

	A logging formatter intended for interactive use called
console.

	A logging handler that writes to stderr called
console which uses the formatter console.

	A logger with the name of this application set to DEBUG
level.

This example adds a new handler that writes to a file:

c.Application.logging_config = {
 'handlers': {
 'file': {
 'class': 'logging.FileHandler',
 'level': 'DEBUG',
 'filename': '<path/to/file>',
 }
 },
 'loggers': {
 '<application-name>': {
 'level': 'DEBUG',
 # NOTE: if you don't list the default "console"
 # handler here then it will be disabled
 'handlers': ['console', 'file'],
 },
 }
}

	Application.show_configBool
	Default: False

Instead of starting the Application, dump configuration to stdout

	Application.show_config_jsonBool
	Default: False

Instead of starting the Application, dump configuration to stdout (as JSON)

	JupyterApp.answer_yesBool
	Default: False

Answer yes to any prompts.

	JupyterApp.config_fileUnicode
	Default: ''

Full path of a config file.

	JupyterApp.config_file_nameUnicode
	Default: ''

Specify a config file to load.

	JupyterApp.generate_configBool
	Default: False

Generate default config file.

	JupyterApp.log_datefmtUnicode
	Default: '%Y-%m-%d %H:%M:%S'

The date format used by logging formatters for %(asctime)s

	JupyterApp.log_formatUnicode
	Default: '[%(name)s]%(highlevel)s %(message)s'

The Logging format template

	JupyterApp.log_levelany of 0``|``10``|``20``|``30``|``40``|``50``|’DEBUG’|’INFO’|’WARN’|’ERROR’|’CRITICAL’``
	Default: 30

Set the log level by value or name.

	JupyterApp.logging_configDict
	Default: {}

Configure additional log handlers.

The default stderr logs handler is configured by the
log_level, log_datefmt and log_format settings.

This configuration can be used to configure additional handlers
(e.g. to output the log to a file) or for finer control over the
default handlers.

If provided this should be a logging configuration dictionary, for
more information see:
https://docs.python.org/3/library/logging.config.html#logging-config-dictschema

This dictionary is merged with the base logging configuration which
defines the following:

	A logging formatter intended for interactive use called
console.

	A logging handler that writes to stderr called
console which uses the formatter console.

	A logger with the name of this application set to DEBUG
level.

This example adds a new handler that writes to a file:

c.Application.logging_config = {
 'handlers': {
 'file': {
 'class': 'logging.FileHandler',
 'level': 'DEBUG',
 'filename': '<path/to/file>',
 }
 },
 'loggers': {
 '<application-name>': {
 'level': 'DEBUG',
 # NOTE: if you don't list the default "console"
 # handler here then it will be disabled
 'handlers': ['console', 'file'],
 },
 }
}

	JupyterApp.show_configBool
	Default: False

Instead of starting the Application, dump configuration to stdout

	JupyterApp.show_config_jsonBool
	Default: False

Instead of starting the Application, dump configuration to stdout (as JSON)

	NbClientApp.allow_errorsBool
	Default: False

When a cell raises an error the default behavior is that
execution is stopped and a nbclient.exceptions.CellExecutionError
is raised.
If this flag is provided, errors are ignored and execution
is continued until the end of the notebook.

	NbClientApp.answer_yesBool
	Default: False

Answer yes to any prompts.

	NbClientApp.config_fileUnicode
	Default: ''

Full path of a config file.

	NbClientApp.config_file_nameUnicode
	Default: ''

Specify a config file to load.

	NbClientApp.generate_configBool
	Default: False

Generate default config file.

	NbClientApp.inplaceBool
	Default: False

Default is execute notebook without writing the newly executed notebook.
If this flag is provided, the newly generated notebook will
overwrite the input notebook.

	NbClientApp.kernel_nameUnicode
	Default: ''

Name of kernel to use to execute the cells.
If not set, use the kernel_spec embedded in the notebook.

	NbClientApp.log_datefmtUnicode
	Default: '%Y-%m-%d %H:%M:%S'

The date format used by logging formatters for %(asctime)s

	NbClientApp.log_formatUnicode
	Default: '[%(name)s]%(highlevel)s %(message)s'

The Logging format template

	NbClientApp.log_levelany of 0``|``10``|``20``|``30``|``40``|``50``|’DEBUG’|’INFO’|’WARN’|’ERROR’|’CRITICAL’``
	Default: 30

Set the log level by value or name.

	NbClientApp.logging_configDict
	Default: {}

Configure additional log handlers.

The default stderr logs handler is configured by the
log_level, log_datefmt and log_format settings.

This configuration can be used to configure additional handlers
(e.g. to output the log to a file) or for finer control over the
default handlers.

If provided this should be a logging configuration dictionary, for
more information see:
https://docs.python.org/3/library/logging.config.html#logging-config-dictschema

This dictionary is merged with the base logging configuration which
defines the following:

	A logging formatter intended for interactive use called
console.

	A logging handler that writes to stderr called
console which uses the formatter console.

	A logger with the name of this application set to DEBUG
level.

This example adds a new handler that writes to a file:

c.Application.logging_config = {
 'handlers': {
 'file': {
 'class': 'logging.FileHandler',
 'level': 'DEBUG',
 'filename': '<path/to/file>',
 }
 },
 'loggers': {
 '<application-name>': {
 'level': 'DEBUG',
 # NOTE: if you don't list the default "console"
 # handler here then it will be disabled
 'handlers': ['console', 'file'],
 },
 }
}

	NbClientApp.notebooksList
	Default: []

Path of notebooks to convert

	NbClientApp.output_baseUnicode
	Default: None

Write executed notebook to this file base name.
Supports pattern replacements '{notebook_name}',
the name of the input notebook file without extension.
Note that output is always relative to the parent directory of the
input notebook.

	NbClientApp.show_configBool
	Default: False

Instead of starting the Application, dump configuration to stdout

	NbClientApp.show_config_jsonBool
	Default: False

Instead of starting the Application, dump configuration to stdout (as JSON)

	NbClientApp.skip_cells_with_tagUnicode
	Default: 'skip-execution'

Name of the cell tag to use to denote a cell that should be skipped.

	NbClientApp.startup_timeoutInt
	Default: 60

The time to wait (in seconds) for the kernel to start.
If kernel startup takes longer, a RuntimeError is
raised.

	NbClientApp.timeoutInt
	Default: None

The time to wait (in seconds) for output from executions.
If a cell execution takes longer, a TimeoutError is raised.
-1 will disable the timeout.

nbclient

	nbclient package
	Subpackages

	Submodules

	nbclient.client module
	NotebookClient
	NotebookClient.allow_error_names

	NotebookClient.allow_errors

	NotebookClient.async_execute()

	NotebookClient.async_execute_cell()

	NotebookClient.async_setup_kernel()

	NotebookClient.async_start_new_kernel()

	NotebookClient.async_start_new_kernel_client()

	NotebookClient.async_wait_for_reply()

	NotebookClient.clear_display_id_mapping()

	NotebookClient.clear_output()

	NotebookClient.coalesce_streams

	NotebookClient.create_kernel_manager()

	NotebookClient.display_data_priority

	NotebookClient.error_on_timeout

	NotebookClient.execute()

	NotebookClient.execute_cell()

	NotebookClient.extra_arguments

	NotebookClient.force_raise_errors

	NotebookClient.handle_comm_msg()

	NotebookClient.interrupt_on_timeout

	NotebookClient.iopub_timeout

	NotebookClient.ipython_hist_file

	NotebookClient.kernel_manager_class

	NotebookClient.kernel_name

	NotebookClient.on_cell_complete

	NotebookClient.on_cell_error

	NotebookClient.on_cell_execute

	NotebookClient.on_cell_executed

	NotebookClient.on_cell_start

	NotebookClient.on_comm_open_jupyter_widget()

	NotebookClient.on_notebook_complete

	NotebookClient.on_notebook_error

	NotebookClient.on_notebook_start

	NotebookClient.output()

	NotebookClient.process_message()

	NotebookClient.raise_on_iopub_timeout

	NotebookClient.record_timing

	NotebookClient.register_output_hook()

	NotebookClient.remove_output_hook()

	NotebookClient.reset_execution_trackers()

	NotebookClient.resources

	NotebookClient.set_widgets_metadata()

	NotebookClient.setup_kernel()

	NotebookClient.shell_timeout_interval

	NotebookClient.shutdown_kernel

	NotebookClient.skip_cells_with_tag

	NotebookClient.start_new_kernel()

	NotebookClient.start_new_kernel_client()

	NotebookClient.startup_timeout

	NotebookClient.store_widget_state

	NotebookClient.timeout

	NotebookClient.timeout_func

	NotebookClient.wait_for_reply()

	execute()

	timestamp()

	nbclient.exceptions module
	CellControlSignal

	CellExecutionComplete

	CellExecutionError
	CellExecutionError.from_cell_and_msg()

	CellTimeoutError
	CellTimeoutError.error_from_timeout_and_cell()

	DeadKernelError

	Module contents
	NotebookClient
	NotebookClient.allow_error_names

	NotebookClient.allow_errors

	NotebookClient.async_execute()

	NotebookClient.async_execute_cell()

	NotebookClient.async_setup_kernel()

	NotebookClient.async_start_new_kernel()

	NotebookClient.async_start_new_kernel_client()

	NotebookClient.async_wait_for_reply()

	NotebookClient.clear_display_id_mapping()

	NotebookClient.clear_output()

	NotebookClient.coalesce_streams

	NotebookClient.comm_open_handlers

	NotebookClient.create_kernel_manager()

	NotebookClient.display_data_priority

	NotebookClient.error_on_timeout

	NotebookClient.execute()

	NotebookClient.execute_cell()

	NotebookClient.extra_arguments

	NotebookClient.force_raise_errors

	NotebookClient.handle_comm_msg()

	NotebookClient.interrupt_on_timeout

	NotebookClient.iopub_timeout

	NotebookClient.ipython_hist_file

	NotebookClient.kc

	NotebookClient.kernel_manager_class

	NotebookClient.kernel_name

	NotebookClient.km

	NotebookClient.nb

	NotebookClient.on_cell_complete

	NotebookClient.on_cell_error

	NotebookClient.on_cell_execute

	NotebookClient.on_cell_executed

	NotebookClient.on_cell_start

	NotebookClient.on_comm_open_jupyter_widget()

	NotebookClient.on_notebook_complete

	NotebookClient.on_notebook_error

	NotebookClient.on_notebook_start

	NotebookClient.output()

	NotebookClient.owns_km

	NotebookClient.process_message()

	NotebookClient.raise_on_iopub_timeout

	NotebookClient.record_timing

	NotebookClient.register_output_hook()

	NotebookClient.remove_output_hook()

	NotebookClient.reset_execution_trackers()

	NotebookClient.resources

	NotebookClient.set_widgets_metadata()

	NotebookClient.setup_kernel()

	NotebookClient.shell_timeout_interval

	NotebookClient.shutdown_kernel

	NotebookClient.skip_cells_with_tag

	NotebookClient.start_new_kernel()

	NotebookClient.start_new_kernel_client()

	NotebookClient.startup_timeout

	NotebookClient.store_widget_state

	NotebookClient.timeout

	NotebookClient.timeout_func

	NotebookClient.wait_for_reply()

	NotebookClient.widget_registry

	execute()

nbclient package

Subpackages

Submodules

nbclient.client module

nbclient implementation.

	
class nbclient.client.NotebookClient(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Bases: LoggingConfigurable

Encompasses a Client for executing cells in a notebook

	
allow_error_names

	List of error names which won’t stop the execution. Use this if the
allow_errors option it too general and you want to allow only
specific kinds of errors.

	
allow_errors

	If False (default), when a cell raises an error the
execution is stopped and a CellExecutionError
is raised, except if the error name is in
allow_error_names.
If True, execution errors are ignored and the execution
is continued until the end of the notebook. Output from
exceptions is included in the cell output in both cases.

	
async async_execute(reset_kc: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → NotebookNode

	Executes each code cell.

	Parameters:

	kwargs – Any option for self.kernel_manager_class.start_kernel(). Because
that defaults to AsyncKernelManager, this will likely include options
accepted by jupyter_client.AsyncKernelManager.start_kernel(),
which includes cwd.

reset_kc if True, the kernel client will be reset and a new one
will be created (default: False).

	Returns:

	nb – The executed notebook.

	Return type:

	NotebookNode

	
async async_execute_cell(cell: NotebookNode, cell_index: int [https://docs.python.org/3/library/functions.html#int], execution_count: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, store_history: bool [https://docs.python.org/3/library/functions.html#bool] = True) → NotebookNode

	Executes a single code cell.

To execute all cells see execute().

	Parameters:

	
	cell (nbformat.NotebookNode) – The cell which is currently being processed.

	cell_index (int [https://docs.python.org/3/library/functions.html#int]) – The position of the cell within the notebook object.

	execution_count (int [https://docs.python.org/3/library/functions.html#int]) – The execution count to be assigned to the cell (default: Use kernel response)

	store_history (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines if history should be stored in the kernel (default: False).
Specific to ipython kernels, which can store command histories.

	Returns:

	output – The execution output payload (or None for no output).

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	CellExecutionError – If execution failed and should raise an exception, this will be raised
 with defaults about the failure.

	Returns:

	cell – The cell which was just processed.

	Return type:

	NotebookNode

	
async_setup_kernel(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → AsyncGenerator [https://docs.python.org/3/library/typing.html#typing.AsyncGenerator][None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Context manager for setting up the kernel to execute a notebook.

This assigns the Kernel Manager (self.km) if missing and Kernel Client(self.kc).

When control returns from the yield it stops the client’s zmq channels, and shuts
down the kernel.

Handlers for SIGINT and SIGTERM are also added to cleanup in case of unexpected shutdown.

	
async async_start_new_kernel(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Creates a new kernel.

	Parameters:

	kwargs – Any options for self.kernel_manager_class.start_kernel(). Because
that defaults to AsyncKernelManager, this will likely include options
accepted by AsyncKernelManager.start_kernel(), which includes cwd.

	
async async_start_new_kernel_client() → KernelClient

	Creates a new kernel client.

	Returns:

	kc – Kernel client as created by the kernel manager km.

	Return type:

	KernelClient

	
async async_wait_for_reply(msg_id: str [https://docs.python.org/3/library/stdtypes.html#str], cell: NotebookNode | None [https://docs.python.org/3/library/constants.html#None] = None) → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None]

	Wait for a message reply.

	
clear_display_id_mapping(cell_index: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Clear a display id mapping for a cell.

	
clear_output(outs: list [https://docs.python.org/3/library/stdtypes.html#list][NotebookNode], msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], cell_index: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Clear output.

	
coalesce_streams

	Merge all stream outputs with shared names into single streams.

	
create_kernel_manager() → KernelManager

	Creates a new kernel manager.

	Returns:

	km – Kernel manager whose client class is asynchronous.

	Return type:

	KernelManager

	
display_data_priority

	An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.

	
error_on_timeout

	If a cell execution was interrupted after a timeout, don’t wait for
the execute_reply from the kernel (e.g. KeyboardInterrupt error).
Instead, return an execute_reply with the given error, which should
be of the following form:

{
 'ename': str, # Exception name, as a string
 'evalue': str, # Exception value, as a string
 'traceback': list(str), # traceback frames, as strings
}

	
execute(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Executes each code cell.

	Parameters:

	kwargs – Any option for self.kernel_manager_class.start_kernel(). Because
that defaults to AsyncKernelManager, this will likely include options
accepted by jupyter_client.AsyncKernelManager.start_kernel(),
which includes cwd.

reset_kc if True, the kernel client will be reset and a new one
will be created (default: False).

	Returns:

	nb – The executed notebook.

	Return type:

	NotebookNode

	
execute_cell(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Executes a single code cell.

To execute all cells see execute().

	Parameters:

	
	cell (nbformat.NotebookNode) – The cell which is currently being processed.

	cell_index (int [https://docs.python.org/3/library/functions.html#int]) – The position of the cell within the notebook object.

	execution_count (int [https://docs.python.org/3/library/functions.html#int]) – The execution count to be assigned to the cell (default: Use kernel response)

	store_history (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines if history should be stored in the kernel (default: False).
Specific to ipython kernels, which can store command histories.

	Returns:

	output – The execution output payload (or None for no output).

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	CellExecutionError – If execution failed and should raise an exception, this will be raised
 with defaults about the failure.

	Returns:

	cell – The cell which was just processed.

	Return type:

	NotebookNode

	
extra_arguments

	An instance of a Python list.

	
force_raise_errors

	If False (default), errors from executing the notebook can be
allowed with a raises-exception tag on a single cell, or the
allow_errors or allow_error_names configurable options for
all cells. An allowed error will be recorded in notebook output, and
execution will continue. If an error occurs when it is not
explicitly allowed, a CellExecutionError will be raised.
If True, CellExecutionError will be raised for any error that occurs
while executing the notebook. This overrides the allow_errors
and allow_error_names options and the raises-exception cell
tag.

	
handle_comm_msg(outs: list [https://docs.python.org/3/library/stdtypes.html#list][NotebookNode], msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], cell_index: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Handle a comm message.

	
interrupt_on_timeout

	If execution of a cell times out, interrupt the kernel and
continue executing other cells rather than throwing an error and
stopping.

	
iopub_timeout

	The time to wait (in seconds) for IOPub output. This generally
doesn’t need to be set, but on some slow networks (such as CI
systems) the default timeout might not be long enough to get all
messages.

	
ipython_hist_file

	Path to file to use for SQLite history database for an IPython kernel.

The specific value :memory: (including the colon
at both end but not the back ticks), avoids creating a history file. Otherwise, IPython
will create a history file for each kernel.

When running kernels simultaneously (e.g. via multiprocessing) saving history a single
SQLite file can result in database errors, so using :memory: is recommended in
non-interactive contexts.

	
kernel_manager_class

	The kernel manager class to use.

	
kernel_name

	Name of kernel to use to execute the cells.
If not set, use the kernel_spec embedded in the notebook.

	
on_cell_complete

	A callable which executes after a cell execution is complete. It is
called even when a cell results in a failure.
Called with kwargs cell and cell_index.

	
on_cell_error

	A callable which executes when a cell execution results in an error.
This is executed even if errors are suppressed with cell_allows_errors.
Called with kwargs cell`, ``cell_index and execute_reply.

	
on_cell_execute

	A callable which executes just before a code cell is executed.
Called with kwargs cell and cell_index.

	
on_cell_executed

	A callable which executes just after a code cell is executed, whether
or not it results in an error.
Called with kwargs cell, cell_index and execute_reply.

	
on_cell_start

	A callable which executes before a cell is executed and before non-executing cells
are skipped.
Called with kwargs cell and cell_index.

	
on_comm_open_jupyter_widget(msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) → Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None]

	Handle a jupyter widget comm open.

	
on_notebook_complete

	A callable which executes after the kernel is cleaned up.
Called with kwargs notebook.

	
on_notebook_error

	A callable which executes when the notebook encounters an error.
Called with kwargs notebook.

	
on_notebook_start

	A callable which executes after the kernel manager and kernel client are setup, and
cells are about to execute.
Called with kwargs notebook.

	
output(outs: list [https://docs.python.org/3/library/stdtypes.html#list][NotebookNode], msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], display_id: str [https://docs.python.org/3/library/stdtypes.html#str], cell_index: int [https://docs.python.org/3/library/functions.html#int]) → NotebookNode | None [https://docs.python.org/3/library/constants.html#None]

	Handle output.

	
process_message(msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], cell: NotebookNode, cell_index: int [https://docs.python.org/3/library/functions.html#int]) → NotebookNode | None [https://docs.python.org/3/library/constants.html#None]

	Processes a kernel message, updates cell state, and returns the
resulting output object that was appended to cell.outputs.

The input argument cell is modified in-place.

	Parameters:

	
	msg (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The kernel message being processed.

	cell (nbformat.NotebookNode) – The cell which is currently being processed.

	cell_index (int [https://docs.python.org/3/library/functions.html#int]) – The position of the cell within the notebook object.

	Returns:

	output – The execution output payload (or None for no output).

	Return type:

	NotebookNode

	Raises:

	CellExecutionComplete – Once a message arrives which indicates computation completeness.

	
raise_on_iopub_timeout

	If False (default), then the kernel will continue waiting for
iopub messages until it receives a kernel idle message, or until a
timeout occurs, at which point the currently executing cell will be
skipped. If True, then an error will be raised after the first
timeout. This option generally does not need to be used, but may be
useful in contexts where there is the possibility of executing
notebooks with memory-consuming infinite loops.

	
record_timing

	If True (default), then the execution timings of each cell will
be stored in the metadata of the notebook.

	
register_output_hook(msg_id: str [https://docs.python.org/3/library/stdtypes.html#str], hook: OutputWidget) → None [https://docs.python.org/3/library/constants.html#None]

	Registers an override object that handles output/clear_output instead.

Multiple hooks can be registered, where the last one will be used (stack based)

	
remove_output_hook(msg_id: str [https://docs.python.org/3/library/stdtypes.html#str], hook: OutputWidget) → None [https://docs.python.org/3/library/constants.html#None]

	Unregisters an override object that handles output/clear_output instead

	
reset_execution_trackers() → None [https://docs.python.org/3/library/constants.html#None]

	Resets any per-execution trackers.

	
resources: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Additional resources used in the conversion process. For example,
passing {'metadata': {'path': run_path}} sets the
execution path to run_path.

	
set_widgets_metadata() → None [https://docs.python.org/3/library/constants.html#None]

	Set with widget metadata.

	
setup_kernel(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Context manager for setting up the kernel to execute a notebook.

The assigns the Kernel Manager (self.km) if missing and Kernel Client(self.kc).

When control returns from the yield it stops the client’s zmq channels, and shuts
down the kernel.

	
shell_timeout_interval

	The time to wait (in seconds) for Shell output before retrying.
This generally doesn’t need to be set, but if one needs to check
for dead kernels at a faster rate this can help.

	
shutdown_kernel

	If graceful (default), then the kernel is given time to clean
up after executing all cells, e.g., to execute its atexit hooks.
If immediate, then the kernel is signaled to immediately
terminate.

	
skip_cells_with_tag

	Name of the cell tag to use to denote a cell that should be skipped.

	
start_new_kernel(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Creates a new kernel.

	Parameters:

	kwargs – Any options for self.kernel_manager_class.start_kernel(). Because
that defaults to AsyncKernelManager, this will likely include options
accepted by AsyncKernelManager.start_kernel(), which includes cwd.

	
start_new_kernel_client(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Creates a new kernel client.

	Returns:

	kc – Kernel client as created by the kernel manager km.

	Return type:

	KernelClient

	
startup_timeout

	The time to wait (in seconds) for the kernel to start.
If kernel startup takes longer, a RuntimeError is
raised.

	
store_widget_state

	If True (default), then the state of the Jupyter widgets created
at the kernel will be stored in the metadata of the notebook.

	
timeout

	The time to wait (in seconds) for output from executions.
If a cell execution takes longer, a TimeoutError is raised.

None or -1 will disable the timeout. If timeout_func is set,
it overrides timeout.

	
timeout_func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]] | None [https://docs.python.org/3/library/constants.html#None]

	A callable which, when given the cell source as input,
returns the time to wait (in seconds) for output from cell
executions. If a cell execution takes longer, a TimeoutError
is raised.

Returning None or -1 will disable the timeout for the cell.
Not setting timeout_func will cause the client to
default to using the timeout trait for all cells. The
timeout_func trait overrides timeout if it is not None.

	
wait_for_reply(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Wait for a message reply.

	
nbclient.client.execute(nb: NotebookNode, cwd: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, km: KernelManager | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → NotebookNode

	Execute a notebook’s code, updating outputs within the notebook object.

This is a convenient wrapper around NotebookClient. It returns the
modified notebook object.

	Parameters:

	
	nb (NotebookNode) – The notebook object to be executed

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If supplied, the kernel will run in this directory

	km (AsyncKernelManager, optional) – If supplied, the specified kernel manager will be used for code execution.

	kwargs – Any other options for NotebookClient, e.g. timeout, kernel_name

	
nbclient.client.timestamp(msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the timestamp for a message.

nbclient.exceptions module

Exceptions for nbclient.

	
exception nbclient.exceptions.CellControlSignal

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

A custom exception used to indicate that the exception is used for cell
control actions (not the best model, but it’s needed to cover existing
behavior without major refactors).

	
exception nbclient.exceptions.CellExecutionComplete

	Bases: CellControlSignal

Used as a control signal for cell execution across execute_cell and
process_message function calls. Raised when all execution requests
are completed and no further messages are expected from the kernel
over zeromq channels.

	
exception nbclient.exceptions.CellExecutionError(traceback: str [https://docs.python.org/3/library/stdtypes.html#str], ename: str [https://docs.python.org/3/library/stdtypes.html#str], evalue: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: CellControlSignal

Custom exception to propagate exceptions that are raised during
notebook execution to the caller. This is mostly useful when
using nbconvert as a library, since it allows to deal with
failures gracefully.

	
classmethod from_cell_and_msg(cell: NotebookNode, msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) → CellExecutionError

	Instantiate from a code cell object and a message contents
(message is either execute_reply or error)

	
exception nbclient.exceptions.CellTimeoutError

	Bases: TimeoutError [https://docs.python.org/3/library/exceptions.html#TimeoutError], CellControlSignal

A custom exception to capture when a cell has timed out during execution.

	
classmethod error_from_timeout_and_cell(msg: str [https://docs.python.org/3/library/stdtypes.html#str], timeout: int [https://docs.python.org/3/library/functions.html#int], cell: NotebookNode) → CellTimeoutError

	Create an error from a timeout on a cell.

	
exception nbclient.exceptions.DeadKernelError

	Bases: RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

A dead kernel error.

Module contents

	
class nbclient.NotebookClient(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Bases: LoggingConfigurable

Encompasses a Client for executing cells in a notebook

	
allow_error_names

	List of error names which won’t stop the execution. Use this if the
allow_errors option it too general and you want to allow only
specific kinds of errors.

	
allow_errors

	If False (default), when a cell raises an error the
execution is stopped and a CellExecutionError
is raised, except if the error name is in
allow_error_names.
If True, execution errors are ignored and the execution
is continued until the end of the notebook. Output from
exceptions is included in the cell output in both cases.

	
async async_execute(reset_kc: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → NotebookNode

	Executes each code cell.

	Parameters:

	kwargs – Any option for self.kernel_manager_class.start_kernel(). Because
that defaults to AsyncKernelManager, this will likely include options
accepted by jupyter_client.AsyncKernelManager.start_kernel(),
which includes cwd.

reset_kc if True, the kernel client will be reset and a new one
will be created (default: False).

	Returns:

	nb – The executed notebook.

	Return type:

	NotebookNode

	
async async_execute_cell(cell: NotebookNode, cell_index: int [https://docs.python.org/3/library/functions.html#int], execution_count: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, store_history: bool [https://docs.python.org/3/library/functions.html#bool] = True) → NotebookNode

	Executes a single code cell.

To execute all cells see execute().

	Parameters:

	
	cell (nbformat.NotebookNode) – The cell which is currently being processed.

	cell_index (int [https://docs.python.org/3/library/functions.html#int]) – The position of the cell within the notebook object.

	execution_count (int [https://docs.python.org/3/library/functions.html#int]) – The execution count to be assigned to the cell (default: Use kernel response)

	store_history (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines if history should be stored in the kernel (default: False).
Specific to ipython kernels, which can store command histories.

	Returns:

	output – The execution output payload (or None for no output).

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	CellExecutionError – If execution failed and should raise an exception, this will be raised
 with defaults about the failure.

	Returns:

	cell – The cell which was just processed.

	Return type:

	NotebookNode

	
async_setup_kernel(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → AsyncGenerator [https://docs.python.org/3/library/typing.html#typing.AsyncGenerator][None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Context manager for setting up the kernel to execute a notebook.

This assigns the Kernel Manager (self.km) if missing and Kernel Client(self.kc).

When control returns from the yield it stops the client’s zmq channels, and shuts
down the kernel.

Handlers for SIGINT and SIGTERM are also added to cleanup in case of unexpected shutdown.

	
async async_start_new_kernel(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Creates a new kernel.

	Parameters:

	kwargs – Any options for self.kernel_manager_class.start_kernel(). Because
that defaults to AsyncKernelManager, this will likely include options
accepted by AsyncKernelManager.start_kernel(), which includes cwd.

	
async async_start_new_kernel_client() → KernelClient

	Creates a new kernel client.

	Returns:

	kc – Kernel client as created by the kernel manager km.

	Return type:

	KernelClient

	
async async_wait_for_reply(msg_id: str [https://docs.python.org/3/library/stdtypes.html#str], cell: NotebookNode | None [https://docs.python.org/3/library/constants.html#None] = None) → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None]

	Wait for a message reply.

	
clear_display_id_mapping(cell_index: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Clear a display id mapping for a cell.

	
clear_output(outs: list [https://docs.python.org/3/library/stdtypes.html#list][NotebookNode], msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], cell_index: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Clear output.

	
coalesce_streams

	Merge all stream outputs with shared names into single streams.

	
comm_open_handlers: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	

	
create_kernel_manager() → KernelManager

	Creates a new kernel manager.

	Returns:

	km – Kernel manager whose client class is asynchronous.

	Return type:

	KernelManager

	
display_data_priority

	An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.

	
error_on_timeout

	If a cell execution was interrupted after a timeout, don’t wait for
the execute_reply from the kernel (e.g. KeyboardInterrupt error).
Instead, return an execute_reply with the given error, which should
be of the following form:

{
 'ename': str, # Exception name, as a string
 'evalue': str, # Exception value, as a string
 'traceback': list(str), # traceback frames, as strings
}

	
execute(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Executes each code cell.

	Parameters:

	kwargs – Any option for self.kernel_manager_class.start_kernel(). Because
that defaults to AsyncKernelManager, this will likely include options
accepted by jupyter_client.AsyncKernelManager.start_kernel(),
which includes cwd.

reset_kc if True, the kernel client will be reset and a new one
will be created (default: False).

	Returns:

	nb – The executed notebook.

	Return type:

	NotebookNode

	
execute_cell(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Executes a single code cell.

To execute all cells see execute().

	Parameters:

	
	cell (nbformat.NotebookNode) – The cell which is currently being processed.

	cell_index (int [https://docs.python.org/3/library/functions.html#int]) – The position of the cell within the notebook object.

	execution_count (int [https://docs.python.org/3/library/functions.html#int]) – The execution count to be assigned to the cell (default: Use kernel response)

	store_history (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines if history should be stored in the kernel (default: False).
Specific to ipython kernels, which can store command histories.

	Returns:

	output – The execution output payload (or None for no output).

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	CellExecutionError – If execution failed and should raise an exception, this will be raised
 with defaults about the failure.

	Returns:

	cell – The cell which was just processed.

	Return type:

	NotebookNode

	
extra_arguments

	An instance of a Python list.

	
force_raise_errors

	If False (default), errors from executing the notebook can be
allowed with a raises-exception tag on a single cell, or the
allow_errors or allow_error_names configurable options for
all cells. An allowed error will be recorded in notebook output, and
execution will continue. If an error occurs when it is not
explicitly allowed, a CellExecutionError will be raised.
If True, CellExecutionError will be raised for any error that occurs
while executing the notebook. This overrides the allow_errors
and allow_error_names options and the raises-exception cell
tag.

	
handle_comm_msg(outs: list [https://docs.python.org/3/library/stdtypes.html#list][NotebookNode], msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], cell_index: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Handle a comm message.

	
interrupt_on_timeout

	If execution of a cell times out, interrupt the kernel and
continue executing other cells rather than throwing an error and
stopping.

	
iopub_timeout

	The time to wait (in seconds) for IOPub output. This generally
doesn’t need to be set, but on some slow networks (such as CI
systems) the default timeout might not be long enough to get all
messages.

	
ipython_hist_file

	Path to file to use for SQLite history database for an IPython kernel.

The specific value :memory: (including the colon
at both end but not the back ticks), avoids creating a history file. Otherwise, IPython
will create a history file for each kernel.

When running kernels simultaneously (e.g. via multiprocessing) saving history a single
SQLite file can result in database errors, so using :memory: is recommended in
non-interactive contexts.

	
kc: KernelClient | None [https://docs.python.org/3/library/constants.html#None]

	

	
kernel_manager_class

	The kernel manager class to use.

	
kernel_name

	Name of kernel to use to execute the cells.
If not set, use the kernel_spec embedded in the notebook.

	
km: KernelManager | None [https://docs.python.org/3/library/constants.html#None]

	

	
nb: NotebookNode

	

	
on_cell_complete

	A callable which executes after a cell execution is complete. It is
called even when a cell results in a failure.
Called with kwargs cell and cell_index.

	
on_cell_error

	A callable which executes when a cell execution results in an error.
This is executed even if errors are suppressed with cell_allows_errors.
Called with kwargs cell`, ``cell_index and execute_reply.

	
on_cell_execute

	A callable which executes just before a code cell is executed.
Called with kwargs cell and cell_index.

	
on_cell_executed

	A callable which executes just after a code cell is executed, whether
or not it results in an error.
Called with kwargs cell, cell_index and execute_reply.

	
on_cell_start

	A callable which executes before a cell is executed and before non-executing cells
are skipped.
Called with kwargs cell and cell_index.

	
on_comm_open_jupyter_widget(msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) → Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None]

	Handle a jupyter widget comm open.

	
on_notebook_complete

	A callable which executes after the kernel is cleaned up.
Called with kwargs notebook.

	
on_notebook_error

	A callable which executes when the notebook encounters an error.
Called with kwargs notebook.

	
on_notebook_start

	A callable which executes after the kernel manager and kernel client are setup, and
cells are about to execute.
Called with kwargs notebook.

	
output(outs: list [https://docs.python.org/3/library/stdtypes.html#list][NotebookNode], msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], display_id: str [https://docs.python.org/3/library/stdtypes.html#str], cell_index: int [https://docs.python.org/3/library/functions.html#int]) → NotebookNode | None [https://docs.python.org/3/library/constants.html#None]

	Handle output.

	
owns_km: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
process_message(msg: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], cell: NotebookNode, cell_index: int [https://docs.python.org/3/library/functions.html#int]) → NotebookNode | None [https://docs.python.org/3/library/constants.html#None]

	Processes a kernel message, updates cell state, and returns the
resulting output object that was appended to cell.outputs.

The input argument cell is modified in-place.

	Parameters:

	
	msg (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The kernel message being processed.

	cell (nbformat.NotebookNode) – The cell which is currently being processed.

	cell_index (int [https://docs.python.org/3/library/functions.html#int]) – The position of the cell within the notebook object.

	Returns:

	output – The execution output payload (or None for no output).

	Return type:

	NotebookNode

	Raises:

	CellExecutionComplete – Once a message arrives which indicates computation completeness.

	
raise_on_iopub_timeout

	If False (default), then the kernel will continue waiting for
iopub messages until it receives a kernel idle message, or until a
timeout occurs, at which point the currently executing cell will be
skipped. If True, then an error will be raised after the first
timeout. This option generally does not need to be used, but may be
useful in contexts where there is the possibility of executing
notebooks with memory-consuming infinite loops.

	
record_timing

	If True (default), then the execution timings of each cell will
be stored in the metadata of the notebook.

	
register_output_hook(msg_id: str [https://docs.python.org/3/library/stdtypes.html#str], hook: OutputWidget) → None [https://docs.python.org/3/library/constants.html#None]

	Registers an override object that handles output/clear_output instead.

Multiple hooks can be registered, where the last one will be used (stack based)

	
remove_output_hook(msg_id: str [https://docs.python.org/3/library/stdtypes.html#str], hook: OutputWidget) → None [https://docs.python.org/3/library/constants.html#None]

	Unregisters an override object that handles output/clear_output instead

	
reset_execution_trackers() → None [https://docs.python.org/3/library/constants.html#None]

	Resets any per-execution trackers.

	
resources: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Additional resources used in the conversion process. For example,
passing {'metadata': {'path': run_path}} sets the
execution path to run_path.

	
set_widgets_metadata() → None [https://docs.python.org/3/library/constants.html#None]

	Set with widget metadata.

	
setup_kernel(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Context manager for setting up the kernel to execute a notebook.

The assigns the Kernel Manager (self.km) if missing and Kernel Client(self.kc).

When control returns from the yield it stops the client’s zmq channels, and shuts
down the kernel.

	
shell_timeout_interval

	The time to wait (in seconds) for Shell output before retrying.
This generally doesn’t need to be set, but if one needs to check
for dead kernels at a faster rate this can help.

	
shutdown_kernel

	If graceful (default), then the kernel is given time to clean
up after executing all cells, e.g., to execute its atexit hooks.
If immediate, then the kernel is signaled to immediately
terminate.

	
skip_cells_with_tag

	Name of the cell tag to use to denote a cell that should be skipped.

	
start_new_kernel(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Creates a new kernel.

	Parameters:

	kwargs – Any options for self.kernel_manager_class.start_kernel(). Because
that defaults to AsyncKernelManager, this will likely include options
accepted by AsyncKernelManager.start_kernel(), which includes cwd.

	
start_new_kernel_client(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Creates a new kernel client.

	Returns:

	kc – Kernel client as created by the kernel manager km.

	Return type:

	KernelClient

	
startup_timeout

	The time to wait (in seconds) for the kernel to start.
If kernel startup takes longer, a RuntimeError is
raised.

	
store_widget_state

	If True (default), then the state of the Jupyter widgets created
at the kernel will be stored in the metadata of the notebook.

	
timeout

	The time to wait (in seconds) for output from executions.
If a cell execution takes longer, a TimeoutError is raised.

None or -1 will disable the timeout. If timeout_func is set,
it overrides timeout.

	
timeout_func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]] | None [https://docs.python.org/3/library/constants.html#None]

	A callable which, when given the cell source as input,
returns the time to wait (in seconds) for output from cell
executions. If a cell execution takes longer, a TimeoutError
is raised.

Returning None or -1 will disable the timeout for the cell.
Not setting timeout_func will cause the client to
default to using the timeout trait for all cells. The
timeout_func trait overrides timeout if it is not None.

	
wait_for_reply(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Wait for a message reply.

	
widget_registry: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	

	
nbclient.execute(nb: NotebookNode, cwd: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, km: KernelManager | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → NotebookNode

	Execute a notebook’s code, updating outputs within the notebook object.

This is a convenient wrapper around NotebookClient. It returns the
modified notebook object.

	Parameters:

	
	nb (NotebookNode) – The notebook object to be executed

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If supplied, the kernel will run in this directory

	km (AsyncKernelManager, optional) – If supplied, the specified kernel manager will be used for code execution.

	kwargs – Any other options for NotebookClient, e.g. timeout, kernel_name

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 nbclient	

 	
 	
 nbclient.client	

 	
 	
 nbclient.client.guide	

 	
 	
 nbclient.exceptions	

Index

 A
 | C
 | D
 | E
 | F
 | H
 | I
 | K
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | W

A

 	
 	allow_error_names (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	allow_errors (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	async_execute() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

 	async_execute_cell() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

 	
 	async_setup_kernel() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

 	async_start_new_kernel() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

 	async_start_new_kernel_client() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

 	async_wait_for_reply() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

C

 	
 	CellControlSignal

 	CellExecutionComplete

 	CellExecutionError

 	CellTimeoutError

 	clear_display_id_mapping() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

 	
 	clear_output() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

 	coalesce_streams (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	comm_open_handlers (nbclient.NotebookClient attribute)

 	create_kernel_manager() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

D

 	
 	DeadKernelError

 	
 	display_data_priority (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

E

 	
 	error_from_timeout_and_cell() (nbclient.exceptions.CellTimeoutError class method)

 	error_on_timeout (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	execute() (in module nbclient)

 	(in module nbclient.client)

 	(nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

 	
 	execute_cell() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

 	extra_arguments (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

F

 	
 	force_raise_errors (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	
 	from_cell_and_msg() (nbclient.exceptions.CellExecutionError class method)

H

 	
 	handle_comm_msg() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

I

 	
 	interrupt_on_timeout (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	iopub_timeout (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	
 	ipython_hist_file (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

K

 	
 	kc (nbclient.NotebookClient attribute)

 	kernel_manager_class (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	
 	kernel_name (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	km (nbclient.NotebookClient attribute)

M

 	
 	
 module

 	nbclient

 	nbclient.client

 	nbclient.client.guide

 	nbclient.exceptions

N

 	
 	nb (nbclient.NotebookClient attribute)

 	
 nbclient

 	module

 	
 nbclient.client

 	module

 	
 	
 nbclient.client.guide

 	module

 	
 nbclient.exceptions

 	module

 	NotebookClient (class in nbclient)

 	(class in nbclient.client)

O

 	
 	on_cell_complete (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	on_cell_error (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	on_cell_execute (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	on_cell_executed (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	on_cell_start (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	
 	on_comm_open_jupyter_widget() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

 	on_notebook_complete (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	on_notebook_error (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	on_notebook_start (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	output() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

 	owns_km (nbclient.NotebookClient attribute)

P

 	
 	process_message() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

R

 	
 	raise_on_iopub_timeout (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	record_timing (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	register_output_hook() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

 	
 	remove_output_hook() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

 	reset_execution_trackers() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

 	resources (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

S

 	
 	set_widgets_metadata() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

 	setup_kernel() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

 	shell_timeout_interval (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	shutdown_kernel (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	skip_cells_with_tag (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	
 	start_new_kernel() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

 	start_new_kernel_client() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

 	startup_timeout (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	store_widget_state (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

T

 	
 	timeout (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	
 	timeout_func (nbclient.client.NotebookClient attribute)

 	(nbclient.NotebookClient attribute)

 	timestamp() (in module nbclient.client)

W

 	
 	wait_for_reply() (nbclient.client.NotebookClient method)

 	(nbclient.NotebookClient method)

 	
 	widget_registry (nbclient.NotebookClient attribute)

 nav.xhtml

 Table of Contents

 		
 Welcome to nbclient

 		
 Installation

 		
 Installing nbclient

 		
 Executing notebooks

 		
 Using the Python API interface

 		
 Example

 		
 Execution arguments (traitlets)

 		
 Hooks before and after notebook or cell execution

 		
 Handling errors and exceptions

 		
 Execution until first error

 		
 Handling errors

 		
 Execute and save all errors

 		
 Widget state

 		
 Using a command-line interface

 		
 Changes in NBClient {#changelog}

 		
 0.10.0

 		
 Enhancements made

 		
 Contributors to this release

 		
 0.9.1

 		
 Maintenance and upkeep improvements

 		
 Other merged PRs

 		
 Contributors to this release

 		
 0.9.0

 		
 Maintenance and upkeep improvements

 		
 Other merged PRs

 		
 Contributors to this release

 		
 0.8.0

 		
 Maintenance and upkeep improvements

 		
 Other merged PRs

 		
 Contributors to this release

 		
 0.7.4

 		
 Enhancements made

 		
 Bugs fixed

 		
 Maintenance and upkeep improvements

 		
 Other merged PRs

 		
 Contributors to this release

 		
 0.7.3

 		
 Maintenance and upkeep improvements

 		
 Other merged PRs

 		
 Contributors to this release

 		
 0.7.2

 		
 Merged PRs

 		
 Contributors to this release

 		
 0.7.1

 		
 Maintenance and upkeep improvements

 		
 Other merged PRs

 		
 Contributors to this release

 		
 0.7.0

 		
 Maintenance and upkeep improvements

 		
 Other merged PRs

 		
 Contributors to this release

 		
 0.6.8

 		
 Merged PRs

 		
 Contributors to this release

 		
 0.6.7

 		
 Merged PRs

 		
 Contributors to this release

 		
 0.6.6

 		
 Merged PRs

 		
 Contributors to this release

 		
 0.6.5

 		
 Merged PRs

 		
 Contributors to this release

 		
 0.6.4

 		
 Merged PRs

 		
 Contributors to this release

 		
 0.6.3

 		
 Bugs fixed

 		
 Documentation improvements

 		
 Contributors to this release

 		
 0.6.2

 		
 Merged PRs

 		
 Contributors to this release

 		
 0.6.1

 		
 Merged PRs

 		
 Contributors to this release

 		
 0.6.0

 		
 Maintenance and upkeep improvements

 		
 Documentation improvements

 		
 Contributors to this release

 		
 0.5.13

 		
 Merged PRs

 		
 Contributors to this release

 		
 0.5.12

 		
 Merged PRs

 		
 Contributors to this release

 		
 0.5.11

 		
 Merged PRs

 		
 Contributors to this release

 		
 0.5.10

 		
 Merged PRs

 		
 Contributors to this release

 		
 0.5.9

 		
 Merged PRs

 		
 Contributors to this release

 		
 0.5.8

 		
 0.5.7

 		
 Merged PRs

 		
 Contributors to this release

 		
 0.5.6

 		
 0.5.5

 		
 0.5.4

 		
 0.5.3

 		
 0.5.2

 		
 0.5.1

 		
 0.5.0

 		
 0.4.2 - 0.4.3

 		
 0.4.1

 		
 0.4.0

 		
 Major Changes

 		
 Fixes

 		
 Operational

 		
 0.3.1

 		
 Fixes

 		
 0.3.0

 		
 Major Changes

 		
 Docs

 		
 0.2.0

 		
 Major Changes

 		
 Fixes

 		
 Docs

 		
 0.1.0

 		
 Reference

 		
 nbclient package

 		
 Subpackages

 		
 Submodules

 		
 nbclient.client module

 		
 nbclient.exceptions module

 		
 Module contents

 		
 Config file and command line options

 		
 Options

 		
 nbclient

 		
 nbclient package

_static/file.png

_static/minus.png

_static/plus.png

